One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI?

White matter microstructural changes during the first three years of healthy brain development are characterized using two different models developed for limited clinical diffusion data: White Matter Tract Integrity (WMTI) metrics from Diffusional Kurtosis Imaging (DKI) and Neurite Orientation Dispe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2015-02, Vol.107, p.242-256
Hauptverfasser: Jelescu, Ileana O, Veraart, Jelle, Adisetiyo, Vitria, Milla, Sarah S, Novikov, Dmitry S, Fieremans, Els
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue
container_start_page 242
container_title NeuroImage (Orlando, Fla.)
container_volume 107
creator Jelescu, Ileana O
Veraart, Jelle
Adisetiyo, Vitria
Milla, Sarah S
Novikov, Dmitry S
Fieremans, Els
description White matter microstructural changes during the first three years of healthy brain development are characterized using two different models developed for limited clinical diffusion data: White Matter Tract Integrity (WMTI) metrics from Diffusional Kurtosis Imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI). Both models reveal a non-linear increase in intra-axonal water fraction and in tortuosity of the extra-axonal space as a function of age, in the genu and splenium of the corpus callosum and the posterior limb of the internal capsule. The changes are consistent with expected behavior related to myelination and asynchrony of fiber development. The intra- and extracellular axial diffusivities as estimated with WMTI do not change appreciably in normal brain development. The quantitative differences in parameter estimates between models are examined and explained in the light of each model's assumptions and consequent biases, as highlighted in simulations. Finally, we discuss the feasibility of a model with fewer assumptions.
doi_str_mv 10.1016/j.neuroimage.2014.12.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1654693830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-794166ea8c16debd6f0b8db0a7a3141f93e7cd0b9c86c3ab94c8ace1836957593</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEoqXwCsgSGzYJdnxJzAKEWi4jFWZTxNJy7JMZjxJ7aiet-hS8Ms60lMsCsfKRznf-Y__-iwIRXBFMxKtd5WGOwY16A1WNCatIXWEsHxTHBEteSt7UD5ea07IlRB4VT1La4UwQ1j4ujmrOZMvq5rj4vvaArOv7ObngkTaXs0tuOtTeHjoQwU_oeusmQKOeJohoDBaG9BptwzWyARIanYkhTXE20xwBma32G0DOo-08ao9Ax-EGWbiCIezHRa7TCSzKW759vlgdVn1Zn52t3j4tHvV6SPDs7jwpvn54f3H6qTxff1ydvjsvDW_4VDaSESFAt4YIC50VPe5a22HdaEoY6SWFxljcSdMKQ3UnmWm1AdJSkb3hkp4Ub25193M3gjX5TlEPah-zp_FGBe3Unx3vtmoTrhSjGNeMZoGXdwIxXM6QJjW6ZGAYtIcwJ0UEZ0LSluL_QWtGCOMsoy_-Qndhjj47oWrMCc_Lcf0vigjGhRRYNJlqb6nla1KE_v51BKslRmqnfsVILTFSpFY5JHn0-e_u3A_-zA39AZhpyPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645696067</pqid></control><display><type>article</type><title>One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI?</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Jelescu, Ileana O ; Veraart, Jelle ; Adisetiyo, Vitria ; Milla, Sarah S ; Novikov, Dmitry S ; Fieremans, Els</creator><creatorcontrib>Jelescu, Ileana O ; Veraart, Jelle ; Adisetiyo, Vitria ; Milla, Sarah S ; Novikov, Dmitry S ; Fieremans, Els</creatorcontrib><description>White matter microstructural changes during the first three years of healthy brain development are characterized using two different models developed for limited clinical diffusion data: White Matter Tract Integrity (WMTI) metrics from Diffusional Kurtosis Imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI). Both models reveal a non-linear increase in intra-axonal water fraction and in tortuosity of the extra-axonal space as a function of age, in the genu and splenium of the corpus callosum and the posterior limb of the internal capsule. The changes are consistent with expected behavior related to myelination and asynchrony of fiber development. The intra- and extracellular axial diffusivities as estimated with WMTI do not change appreciably in normal brain development. The quantitative differences in parameter estimates between models are examined and explained in the light of each model's assumptions and consequent biases, as highlighted in simulations. Finally, we discuss the feasibility of a model with fewer assumptions.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2014.12.009</identifier><identifier>PMID: 25498427</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Age ; Aging - physiology ; Axons - physiology ; Computer Simulation ; Corpus callosum ; Corpus Callosum - growth &amp; development ; Corpus Callosum - physiology ; Diffusion ; Diffusion Magnetic Resonance Imaging ; Female ; Humans ; Infant ; Infant, Newborn ; Internal Capsule - growth &amp; development ; Internal Capsule - physiology ; Kurtosis ; Male ; Microstructure ; Models, Neurological ; Myelin Sheath - physiology ; Myelination ; Nerve Fibers, Myelinated - physiology ; Neurites - physiology ; Neuroimaging ; Newborn babies ; Substantia alba ; White Matter - anatomy &amp; histology ; White Matter - growth &amp; development</subject><ispartof>NeuroImage (Orlando, Fla.), 2015-02, Vol.107, p.242-256</ispartof><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 15, 2015</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-794166ea8c16debd6f0b8db0a7a3141f93e7cd0b9c86c3ab94c8ace1836957593</citedby><cites>FETCH-LOGICAL-c575t-794166ea8c16debd6f0b8db0a7a3141f93e7cd0b9c86c3ab94c8ace1836957593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1645696067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25498427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jelescu, Ileana O</creatorcontrib><creatorcontrib>Veraart, Jelle</creatorcontrib><creatorcontrib>Adisetiyo, Vitria</creatorcontrib><creatorcontrib>Milla, Sarah S</creatorcontrib><creatorcontrib>Novikov, Dmitry S</creatorcontrib><creatorcontrib>Fieremans, Els</creatorcontrib><title>One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI?</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>White matter microstructural changes during the first three years of healthy brain development are characterized using two different models developed for limited clinical diffusion data: White Matter Tract Integrity (WMTI) metrics from Diffusional Kurtosis Imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI). Both models reveal a non-linear increase in intra-axonal water fraction and in tortuosity of the extra-axonal space as a function of age, in the genu and splenium of the corpus callosum and the posterior limb of the internal capsule. The changes are consistent with expected behavior related to myelination and asynchrony of fiber development. The intra- and extracellular axial diffusivities as estimated with WMTI do not change appreciably in normal brain development. The quantitative differences in parameter estimates between models are examined and explained in the light of each model's assumptions and consequent biases, as highlighted in simulations. Finally, we discuss the feasibility of a model with fewer assumptions.</description><subject>Age</subject><subject>Aging - physiology</subject><subject>Axons - physiology</subject><subject>Computer Simulation</subject><subject>Corpus callosum</subject><subject>Corpus Callosum - growth &amp; development</subject><subject>Corpus Callosum - physiology</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Internal Capsule - growth &amp; development</subject><subject>Internal Capsule - physiology</subject><subject>Kurtosis</subject><subject>Male</subject><subject>Microstructure</subject><subject>Models, Neurological</subject><subject>Myelin Sheath - physiology</subject><subject>Myelination</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Neurites - physiology</subject><subject>Neuroimaging</subject><subject>Newborn babies</subject><subject>Substantia alba</subject><subject>White Matter - anatomy &amp; histology</subject><subject>White Matter - growth &amp; development</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkstu1DAUhiMEoqXwCsgSGzYJdnxJzAKEWi4jFWZTxNJy7JMZjxJ7aiet-hS8Ms60lMsCsfKRznf-Y__-iwIRXBFMxKtd5WGOwY16A1WNCatIXWEsHxTHBEteSt7UD5ea07IlRB4VT1La4UwQ1j4ujmrOZMvq5rj4vvaArOv7ObngkTaXs0tuOtTeHjoQwU_oeusmQKOeJohoDBaG9BptwzWyARIanYkhTXE20xwBma32G0DOo-08ao9Ax-EGWbiCIezHRa7TCSzKW759vlgdVn1Zn52t3j4tHvV6SPDs7jwpvn54f3H6qTxff1ydvjsvDW_4VDaSESFAt4YIC50VPe5a22HdaEoY6SWFxljcSdMKQ3UnmWm1AdJSkb3hkp4Ub25193M3gjX5TlEPah-zp_FGBe3Unx3vtmoTrhSjGNeMZoGXdwIxXM6QJjW6ZGAYtIcwJ0UEZ0LSluL_QWtGCOMsoy_-Qndhjj47oWrMCc_Lcf0vigjGhRRYNJlqb6nla1KE_v51BKslRmqnfsVILTFSpFY5JHn0-e_u3A_-zA39AZhpyPs</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Jelescu, Ileana O</creator><creator>Veraart, Jelle</creator><creator>Adisetiyo, Vitria</creator><creator>Milla, Sarah S</creator><creator>Novikov, Dmitry S</creator><creator>Fieremans, Els</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20150215</creationdate><title>One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI?</title><author>Jelescu, Ileana O ; Veraart, Jelle ; Adisetiyo, Vitria ; Milla, Sarah S ; Novikov, Dmitry S ; Fieremans, Els</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-794166ea8c16debd6f0b8db0a7a3141f93e7cd0b9c86c3ab94c8ace1836957593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Age</topic><topic>Aging - physiology</topic><topic>Axons - physiology</topic><topic>Computer Simulation</topic><topic>Corpus callosum</topic><topic>Corpus Callosum - growth &amp; development</topic><topic>Corpus Callosum - physiology</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Internal Capsule - growth &amp; development</topic><topic>Internal Capsule - physiology</topic><topic>Kurtosis</topic><topic>Male</topic><topic>Microstructure</topic><topic>Models, Neurological</topic><topic>Myelin Sheath - physiology</topic><topic>Myelination</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Neurites - physiology</topic><topic>Neuroimaging</topic><topic>Newborn babies</topic><topic>Substantia alba</topic><topic>White Matter - anatomy &amp; histology</topic><topic>White Matter - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jelescu, Ileana O</creatorcontrib><creatorcontrib>Veraart, Jelle</creatorcontrib><creatorcontrib>Adisetiyo, Vitria</creatorcontrib><creatorcontrib>Milla, Sarah S</creatorcontrib><creatorcontrib>Novikov, Dmitry S</creatorcontrib><creatorcontrib>Fieremans, Els</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jelescu, Ileana O</au><au>Veraart, Jelle</au><au>Adisetiyo, Vitria</au><au>Milla, Sarah S</au><au>Novikov, Dmitry S</au><au>Fieremans, Els</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI?</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2015-02-15</date><risdate>2015</risdate><volume>107</volume><spage>242</spage><epage>256</epage><pages>242-256</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>White matter microstructural changes during the first three years of healthy brain development are characterized using two different models developed for limited clinical diffusion data: White Matter Tract Integrity (WMTI) metrics from Diffusional Kurtosis Imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI). Both models reveal a non-linear increase in intra-axonal water fraction and in tortuosity of the extra-axonal space as a function of age, in the genu and splenium of the corpus callosum and the posterior limb of the internal capsule. The changes are consistent with expected behavior related to myelination and asynchrony of fiber development. The intra- and extracellular axial diffusivities as estimated with WMTI do not change appreciably in normal brain development. The quantitative differences in parameter estimates between models are examined and explained in the light of each model's assumptions and consequent biases, as highlighted in simulations. Finally, we discuss the feasibility of a model with fewer assumptions.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>25498427</pmid><doi>10.1016/j.neuroimage.2014.12.009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2015-02, Vol.107, p.242-256
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300243
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Age
Aging - physiology
Axons - physiology
Computer Simulation
Corpus callosum
Corpus Callosum - growth & development
Corpus Callosum - physiology
Diffusion
Diffusion Magnetic Resonance Imaging
Female
Humans
Infant
Infant, Newborn
Internal Capsule - growth & development
Internal Capsule - physiology
Kurtosis
Male
Microstructure
Models, Neurological
Myelin Sheath - physiology
Myelination
Nerve Fibers, Myelinated - physiology
Neurites - physiology
Neuroimaging
Newborn babies
Substantia alba
White Matter - anatomy & histology
White Matter - growth & development
title One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20diffusion%20acquisition%20and%20different%20white%20matter%20models:%20how%20does%20microstructure%20change%20in%20human%20early%20development%20based%20on%20WMTI%20and%20NODDI?&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Jelescu,%20Ileana%20O&rft.date=2015-02-15&rft.volume=107&rft.spage=242&rft.epage=256&rft.pages=242-256&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2014.12.009&rft_dat=%3Cproquest_pubme%3E1654693830%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645696067&rft_id=info:pmid/25498427&rfr_iscdi=true