Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice
Hand-foot-and-mouth disease (HFMD) has been recognized as an important global public health issue, which is predominantly caused by enterovirus 71 (EV-A71) and coxsackievirus A16 (CVA16). There is no available vaccine against HFMD. An ideal HFMD vaccine should be bivalent against both EV-A71 and CVA...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-01, Vol.5 (1), p.7878-7878, Article 7878 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hand-foot-and-mouth disease (HFMD) has been recognized as an important global public health issue, which is predominantly caused by enterovirus 71 (EV-A71) and coxsackievirus A16 (CVA16). There is no available vaccine against HFMD. An ideal HFMD vaccine should be bivalent against both EV-A71 and CVA16. Here, a novel strategy to produce bivalent HFMD vaccine based on chimeric EV-A71 virus-like particles (ChiEV-A71 VLPs) was proposed and illustrated. The neutralizing epitope SP70 within the capsid protein VP1 of EV-A71 was replaced with that of CVA16 in ChiEV-A71 VLPs. Structural modeling revealed that the replaced CVA16-SP70 epitope is well exposed on the surface of ChiEV-A71 VLPs. These VLPs produced in
Saccharomyces cerevisiae
exhibited similarity in both protein composition and morphology as naive EV-A71 VLPs. Immunization with ChiEV-A71 VLPs in mice elicited robust Th1/Th2 dependent immune responses against EV-A71 and CVA16. Furthermore, passive immunization with anti-ChiEV-A71 VLPs sera conferred full protection against lethal challenge of both EV-A71 and CVA16 infection in neonatal mice. These results suggested that this chimeric vaccine, ChiEV-A71 might have the potential to be further developed as a bivalent HFMD vaccine in the near future. Such chimeric enterovirus VLPs provide an alternative platform for bivalent HFMD vaccine development. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep07878 |