The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility

Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2014-02, Vol.321 (2), p.109-122
Hauptverfasser: Khalil, Bassem D., Hanna, Samer, Saykali, Bechara A., El-Sitt, Sally, Nasrallah, Anita, Marston, Daniel, El-Sabban, Marwan, Hahn, Klaus M., Symons, Marc, El-Sibai, Mirvat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 2
container_start_page 109
container_title Experimental cell research
container_volume 321
creator Khalil, Bassem D.
Hanna, Samer
Saykali, Bechara A.
El-Sitt, Sally
Nasrallah, Anita
Marston, Daniel
El-Sabban, Marwan
Hahn, Klaus M.
Symons, Marc
El-Sibai, Mirvat
description Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA activation at the rear edge of cells, which makes them defective in retracting their tail. This study highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma cells and establishes StarD13 as a GAP playing a major role in this process. •This study, for the first time, describes a tumor suppressor needed for cancer cell motility.•The study reconciles many reports showing contradictory roles of RhoA in cell motility.•The study highlights the importance of the regulation of RhoA activity in astrocytoma cell motility.•The study establishes StarD13 as a GAP playing a major role in this process.
doi_str_mv 10.1016/j.yexcr.2013.11.023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4297755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482713005168</els_id><sourcerecordid>3198489061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-af63ffe6f346b54f17bacf910c8a5828579627b563b6fac07955a66b21aa59e43</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhCZCQJTbdZPD1X5IFSFUpP1IlJChr68ZjdzxK4sF2KvL2zTClAhasvLjfPfbxR8hLYGtgoN_s1rP7adOaMxBrgDXj4hFZAWtZxSXnj8mKMZCVbHh9Qp7lvGOMNQ3op-SESyGEYnpFzPXW0eRuph5LiCONnn7dxnOKhfposae42bq8TDLtZvqtYHoPgoZMw7CPqeB44BLFXFK0c4kDUuv6ng6xhD6U-Tl54rHP7sX9eUq-f7i8vvhUXX35-Pni_KqyirNSodfCe6e9kLpT0kPdofUtMNuganij6lbzulNadNqjZXWrFGrdcUBUrZPilLw75u6nbnAb68aSsDf7FAZMs4kYzN-TMWzNTbw1krd1rdQScHYfkOKPyeVihpAPVXB0ccoGlJQMWM31gr7-B93FKY1LPQOyFQCNauqFEkfKpphzcv7hMcDMQaDZmV8CzUGgATCLwGXr1Z89HnZ-G1uAt0fALb95G1wy2QY3WrcJydliNjH894I7EvmuCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1493118587</pqid></control><display><type>article</type><title>The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Khalil, Bassem D. ; Hanna, Samer ; Saykali, Bechara A. ; El-Sitt, Sally ; Nasrallah, Anita ; Marston, Daniel ; El-Sabban, Marwan ; Hahn, Klaus M. ; Symons, Marc ; El-Sibai, Mirvat</creator><creatorcontrib>Khalil, Bassem D. ; Hanna, Samer ; Saykali, Bechara A. ; El-Sitt, Sally ; Nasrallah, Anita ; Marston, Daniel ; El-Sabban, Marwan ; Hahn, Klaus M. ; Symons, Marc ; El-Sibai, Mirvat</creatorcontrib><description>Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA activation at the rear edge of cells, which makes them defective in retracting their tail. This study highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma cells and establishes StarD13 as a GAP playing a major role in this process. •This study, for the first time, describes a tumor suppressor needed for cancer cell motility.•The study reconciles many reports showing contradictory roles of RhoA in cell motility.•The study highlights the importance of the regulation of RhoA activity in astrocytoma cell motility.•The study establishes StarD13 as a GAP playing a major role in this process.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2013.11.023</identifier><identifier>PMID: 24333506</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Astrocytoma ; Astrocytoma - genetics ; Astrocytoma - metabolism ; Astrocytoma - pathology ; Brain cancer ; Cell adhesion &amp; migration ; Cell Adhesion - drug effects ; Cell Adhesion - genetics ; Cell motility ; Cell Movement - drug effects ; Cell Movement - genetics ; Focal Adhesions - drug effects ; Focal Adhesions - genetics ; Focal Adhesions - metabolism ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockdown Techniques ; Humans ; Protein expression ; Rac ; RhoA ; rhoA GTP-Binding Protein - antagonists &amp; inhibitors ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; RNA, Small Interfering - pharmacology ; StarD13 ; Tissue Distribution - drug effects ; Tissue Distribution - genetics ; Tumor Cells, Cultured ; Tumor Suppressor Proteins - antagonists &amp; inhibitors ; Tumor Suppressor Proteins - physiology</subject><ispartof>Experimental cell research, 2014-02, Vol.321 (2), p.109-122</ispartof><rights>2013 Elsevier Inc.</rights><rights>2013 Published by Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-af63ffe6f346b54f17bacf910c8a5828579627b563b6fac07955a66b21aa59e43</citedby><cites>FETCH-LOGICAL-c520t-af63ffe6f346b54f17bacf910c8a5828579627b563b6fac07955a66b21aa59e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014482713005168$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24333506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalil, Bassem D.</creatorcontrib><creatorcontrib>Hanna, Samer</creatorcontrib><creatorcontrib>Saykali, Bechara A.</creatorcontrib><creatorcontrib>El-Sitt, Sally</creatorcontrib><creatorcontrib>Nasrallah, Anita</creatorcontrib><creatorcontrib>Marston, Daniel</creatorcontrib><creatorcontrib>El-Sabban, Marwan</creatorcontrib><creatorcontrib>Hahn, Klaus M.</creatorcontrib><creatorcontrib>Symons, Marc</creatorcontrib><creatorcontrib>El-Sibai, Mirvat</creatorcontrib><title>The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA activation at the rear edge of cells, which makes them defective in retracting their tail. This study highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma cells and establishes StarD13 as a GAP playing a major role in this process. •This study, for the first time, describes a tumor suppressor needed for cancer cell motility.•The study reconciles many reports showing contradictory roles of RhoA in cell motility.•The study highlights the importance of the regulation of RhoA activity in astrocytoma cell motility.•The study establishes StarD13 as a GAP playing a major role in this process.</description><subject>Astrocytoma</subject><subject>Astrocytoma - genetics</subject><subject>Astrocytoma - metabolism</subject><subject>Astrocytoma - pathology</subject><subject>Brain cancer</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Adhesion - genetics</subject><subject>Cell motility</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - genetics</subject><subject>Focal Adhesions - drug effects</subject><subject>Focal Adhesions - genetics</subject><subject>Focal Adhesions - metabolism</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Protein expression</subject><subject>Rac</subject><subject>RhoA</subject><subject>rhoA GTP-Binding Protein - antagonists &amp; inhibitors</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>StarD13</subject><subject>Tissue Distribution - drug effects</subject><subject>Tissue Distribution - genetics</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Suppressor Proteins - antagonists &amp; inhibitors</subject><subject>Tumor Suppressor Proteins - physiology</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EokPhCZCQJTbdZPD1X5IFSFUpP1IlJChr68ZjdzxK4sF2KvL2zTClAhasvLjfPfbxR8hLYGtgoN_s1rP7adOaMxBrgDXj4hFZAWtZxSXnj8mKMZCVbHh9Qp7lvGOMNQ3op-SESyGEYnpFzPXW0eRuph5LiCONnn7dxnOKhfposae42bq8TDLtZvqtYHoPgoZMw7CPqeB44BLFXFK0c4kDUuv6ng6xhD6U-Tl54rHP7sX9eUq-f7i8vvhUXX35-Pni_KqyirNSodfCe6e9kLpT0kPdofUtMNuganij6lbzulNadNqjZXWrFGrdcUBUrZPilLw75u6nbnAb68aSsDf7FAZMs4kYzN-TMWzNTbw1krd1rdQScHYfkOKPyeVihpAPVXB0ccoGlJQMWM31gr7-B93FKY1LPQOyFQCNauqFEkfKpphzcv7hMcDMQaDZmV8CzUGgATCLwGXr1Z89HnZ-G1uAt0fALb95G1wy2QY3WrcJydliNjH894I7EvmuCA</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Khalil, Bassem D.</creator><creator>Hanna, Samer</creator><creator>Saykali, Bechara A.</creator><creator>El-Sitt, Sally</creator><creator>Nasrallah, Anita</creator><creator>Marston, Daniel</creator><creator>El-Sabban, Marwan</creator><creator>Hahn, Klaus M.</creator><creator>Symons, Marc</creator><creator>El-Sibai, Mirvat</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140215</creationdate><title>The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility</title><author>Khalil, Bassem D. ; Hanna, Samer ; Saykali, Bechara A. ; El-Sitt, Sally ; Nasrallah, Anita ; Marston, Daniel ; El-Sabban, Marwan ; Hahn, Klaus M. ; Symons, Marc ; El-Sibai, Mirvat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-af63ffe6f346b54f17bacf910c8a5828579627b563b6fac07955a66b21aa59e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astrocytoma</topic><topic>Astrocytoma - genetics</topic><topic>Astrocytoma - metabolism</topic><topic>Astrocytoma - pathology</topic><topic>Brain cancer</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Adhesion - genetics</topic><topic>Cell motility</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - genetics</topic><topic>Focal Adhesions - drug effects</topic><topic>Focal Adhesions - genetics</topic><topic>Focal Adhesions - metabolism</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Protein expression</topic><topic>Rac</topic><topic>RhoA</topic><topic>rhoA GTP-Binding Protein - antagonists &amp; inhibitors</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>StarD13</topic><topic>Tissue Distribution - drug effects</topic><topic>Tissue Distribution - genetics</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Suppressor Proteins - antagonists &amp; inhibitors</topic><topic>Tumor Suppressor Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalil, Bassem D.</creatorcontrib><creatorcontrib>Hanna, Samer</creatorcontrib><creatorcontrib>Saykali, Bechara A.</creatorcontrib><creatorcontrib>El-Sitt, Sally</creatorcontrib><creatorcontrib>Nasrallah, Anita</creatorcontrib><creatorcontrib>Marston, Daniel</creatorcontrib><creatorcontrib>El-Sabban, Marwan</creatorcontrib><creatorcontrib>Hahn, Klaus M.</creatorcontrib><creatorcontrib>Symons, Marc</creatorcontrib><creatorcontrib>El-Sibai, Mirvat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalil, Bassem D.</au><au>Hanna, Samer</au><au>Saykali, Bechara A.</au><au>El-Sitt, Sally</au><au>Nasrallah, Anita</au><au>Marston, Daniel</au><au>El-Sabban, Marwan</au><au>Hahn, Klaus M.</au><au>Symons, Marc</au><au>El-Sibai, Mirvat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>2014-02-15</date><risdate>2014</risdate><volume>321</volume><issue>2</issue><spage>109</spage><epage>122</epage><pages>109-122</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA activation at the rear edge of cells, which makes them defective in retracting their tail. This study highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma cells and establishes StarD13 as a GAP playing a major role in this process. •This study, for the first time, describes a tumor suppressor needed for cancer cell motility.•The study reconciles many reports showing contradictory roles of RhoA in cell motility.•The study highlights the importance of the regulation of RhoA activity in astrocytoma cell motility.•The study establishes StarD13 as a GAP playing a major role in this process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24333506</pmid><doi>10.1016/j.yexcr.2013.11.023</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4827
ispartof Experimental cell research, 2014-02, Vol.321 (2), p.109-122
issn 0014-4827
1090-2422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4297755
source MEDLINE; Elsevier ScienceDirect Journals
subjects Astrocytoma
Astrocytoma - genetics
Astrocytoma - metabolism
Astrocytoma - pathology
Brain cancer
Cell adhesion & migration
Cell Adhesion - drug effects
Cell Adhesion - genetics
Cell motility
Cell Movement - drug effects
Cell Movement - genetics
Focal Adhesions - drug effects
Focal Adhesions - genetics
Focal Adhesions - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Gene Knockdown Techniques
Humans
Protein expression
Rac
RhoA
rhoA GTP-Binding Protein - antagonists & inhibitors
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
RNA, Small Interfering - pharmacology
StarD13
Tissue Distribution - drug effects
Tissue Distribution - genetics
Tumor Cells, Cultured
Tumor Suppressor Proteins - antagonists & inhibitors
Tumor Suppressor Proteins - physiology
title The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regulation%20of%20RhoA%20at%20focal%20adhesions%20by%20StarD13%20is%20important%20for%20astrocytoma%20cell%20motility&rft.jtitle=Experimental%20cell%20research&rft.au=Khalil,%20Bassem%20D.&rft.date=2014-02-15&rft.volume=321&rft.issue=2&rft.spage=109&rft.epage=122&rft.pages=109-122&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2013.11.023&rft_dat=%3Cproquest_pubme%3E3198489061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1493118587&rft_id=info:pmid/24333506&rft_els_id=S0014482713005168&rfr_iscdi=true