Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

Nuclear energy provides more than 10% of electrical power internationally and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-01, Vol.5 (1), p.7801-7801, Article 7801
Hauptverfasser: Sun, C., Zheng, S., Wei, C. C., Wu, Y., Shao, L., Yang, Y., Hartwig, K. T., Maloy, S. A., Zinkle, S. J., Allen, T. R., Wang, H., Zhang, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7801
container_issue 1
container_start_page 7801
container_title Scientific reports
container_volume 5
creator Sun, C.
Zheng, S.
Wei, C. C.
Wu, Y.
Shao, L.
Yang, Y.
Hartwig, K. T.
Maloy, S. A.
Zinkle, S. J.
Allen, T. R.
Wang, H.
Zhang, X.
description Nuclear energy provides more than 10% of electrical power internationally and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M 23 C 6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.
doi_str_mv 10.1038/srep07801
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4295098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652378023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-c53bf4438252cee9ccb0e7131662de9eb6187d174fea62c2f8db27b22fcabfad3</originalsourceid><addsrcrecordid>eNplkU1LHTEUhoO0qFgX_gEJdFMLtyYn85HZCCJaCxe6qK5DJnPmNjKTjElGdNPfbuy119s2i-TAeXjOCS8hR5x94UzI0xhwYrVkfIfsAyvKBQiAd1v1HjmM8Y7lU0JT8GaX7EFZSimg2ie_fswTBusDDbqzOlnvFgGjjUm7RJ12Ht3KOsSAHdVzTOhssoYKVixphqwbMMZcIQ60zxo9TYM1v0WRWkfxMQUc8U1P0T3Y4N2ILsUP5H2vh4iHr-8Bub26vLm4Xiy_f_12cb5cmJIVKd-i7YtCSCjBIDbGtAxrLnhVQYcNthWXdcfrokddgYFedi3ULUBvdNvrThyQs7V3mtsRO5NnBz2oKdhRhyfltVV_d5z9qVb-QRXQlKyRWfDpVRD8_YwxqdFGg8OgHfo5Kl6VIHIKIDL68R_0zs_B5e8pLhvJWZO3ztTJmjLBx5xhv1mGM_USrNoEm9nj7e035J8YM_B5DcTccisMWyP_sz0DXtqxbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898109662</pqid></control><display><type>article</type><title>Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, C. ; Zheng, S. ; Wei, C. C. ; Wu, Y. ; Shao, L. ; Yang, Y. ; Hartwig, K. T. ; Maloy, S. A. ; Zinkle, S. J. ; Allen, T. R. ; Wang, H. ; Zhang, X.</creator><creatorcontrib>Sun, C. ; Zheng, S. ; Wei, C. C. ; Wu, Y. ; Shao, L. ; Yang, Y. ; Hartwig, K. T. ; Maloy, S. A. ; Zinkle, S. J. ; Allen, T. R. ; Wang, H. ; Zhang, X.</creatorcontrib><description>Nuclear energy provides more than 10% of electrical power internationally and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M 23 C 6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep07801</identifier><identifier>PMID: 25588326</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 147/28 ; 639/166 ; 639/301 ; Alloys ; Electric power ; Energy demand ; High temperature ; Humanities and Social Sciences ; Irradiation ; multidisciplinary ; Nuclear energy ; Nuclear reactors ; Science ; Stainless steel</subject><ispartof>Scientific reports, 2015-01, Vol.5 (1), p.7801-7801, Article 7801</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-c53bf4438252cee9ccb0e7131662de9eb6187d174fea62c2f8db27b22fcabfad3</citedby><cites>FETCH-LOGICAL-c504t-c53bf4438252cee9ccb0e7131662de9eb6187d174fea62c2f8db27b22fcabfad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295098/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295098/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25588326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, C.</creatorcontrib><creatorcontrib>Zheng, S.</creatorcontrib><creatorcontrib>Wei, C. C.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Shao, L.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Hartwig, K. T.</creatorcontrib><creatorcontrib>Maloy, S. A.</creatorcontrib><creatorcontrib>Zinkle, S. J.</creatorcontrib><creatorcontrib>Allen, T. R.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><title>Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Nuclear energy provides more than 10% of electrical power internationally and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M 23 C 6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.</description><subject>147/143</subject><subject>147/28</subject><subject>639/166</subject><subject>639/301</subject><subject>Alloys</subject><subject>Electric power</subject><subject>Energy demand</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Irradiation</subject><subject>multidisciplinary</subject><subject>Nuclear energy</subject><subject>Nuclear reactors</subject><subject>Science</subject><subject>Stainless steel</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1LHTEUhoO0qFgX_gEJdFMLtyYn85HZCCJaCxe6qK5DJnPmNjKTjElGdNPfbuy119s2i-TAeXjOCS8hR5x94UzI0xhwYrVkfIfsAyvKBQiAd1v1HjmM8Y7lU0JT8GaX7EFZSimg2ie_fswTBusDDbqzOlnvFgGjjUm7RJ12Ht3KOsSAHdVzTOhssoYKVixphqwbMMZcIQ60zxo9TYM1v0WRWkfxMQUc8U1P0T3Y4N2ILsUP5H2vh4iHr-8Bub26vLm4Xiy_f_12cb5cmJIVKd-i7YtCSCjBIDbGtAxrLnhVQYcNthWXdcfrokddgYFedi3ULUBvdNvrThyQs7V3mtsRO5NnBz2oKdhRhyfltVV_d5z9qVb-QRXQlKyRWfDpVRD8_YwxqdFGg8OgHfo5Kl6VIHIKIDL68R_0zs_B5e8pLhvJWZO3ztTJmjLBx5xhv1mGM_USrNoEm9nj7e035J8YM_B5DcTccisMWyP_sz0DXtqxbA</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Sun, C.</creator><creator>Zheng, S.</creator><creator>Wei, C. C.</creator><creator>Wu, Y.</creator><creator>Shao, L.</creator><creator>Yang, Y.</creator><creator>Hartwig, K. T.</creator><creator>Maloy, S. A.</creator><creator>Zinkle, S. J.</creator><creator>Allen, T. R.</creator><creator>Wang, H.</creator><creator>Zhang, X.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150115</creationdate><title>Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments</title><author>Sun, C. ; Zheng, S. ; Wei, C. C. ; Wu, Y. ; Shao, L. ; Yang, Y. ; Hartwig, K. T. ; Maloy, S. A. ; Zinkle, S. J. ; Allen, T. R. ; Wang, H. ; Zhang, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-c53bf4438252cee9ccb0e7131662de9eb6187d174fea62c2f8db27b22fcabfad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>147/143</topic><topic>147/28</topic><topic>639/166</topic><topic>639/301</topic><topic>Alloys</topic><topic>Electric power</topic><topic>Energy demand</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Irradiation</topic><topic>multidisciplinary</topic><topic>Nuclear energy</topic><topic>Nuclear reactors</topic><topic>Science</topic><topic>Stainless steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, C.</creatorcontrib><creatorcontrib>Zheng, S.</creatorcontrib><creatorcontrib>Wei, C. C.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Shao, L.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Hartwig, K. T.</creatorcontrib><creatorcontrib>Maloy, S. A.</creatorcontrib><creatorcontrib>Zinkle, S. J.</creatorcontrib><creatorcontrib>Allen, T. R.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, C.</au><au>Zheng, S.</au><au>Wei, C. C.</au><au>Wu, Y.</au><au>Shao, L.</au><au>Yang, Y.</au><au>Hartwig, K. T.</au><au>Maloy, S. A.</au><au>Zinkle, S. J.</au><au>Allen, T. R.</au><au>Wang, H.</au><au>Zhang, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-01-15</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>7801</spage><epage>7801</epage><pages>7801-7801</pages><artnum>7801</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Nuclear energy provides more than 10% of electrical power internationally and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M 23 C 6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25588326</pmid><doi>10.1038/srep07801</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-01, Vol.5 (1), p.7801-7801, Article 7801
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4295098
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 147/143
147/28
639/166
639/301
Alloys
Electric power
Energy demand
High temperature
Humanities and Social Sciences
Irradiation
multidisciplinary
Nuclear energy
Nuclear reactors
Science
Stainless steel
title Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20radiation-resistant%20nanoengineered%20austenitic%20304L%20stainless%20steel%20for%20applications%20in%20extreme%20radiation%20environments&rft.jtitle=Scientific%20reports&rft.au=Sun,%20C.&rft.date=2015-01-15&rft.volume=5&rft.issue=1&rft.spage=7801&rft.epage=7801&rft.pages=7801-7801&rft.artnum=7801&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep07801&rft_dat=%3Cproquest_pubme%3E1652378023%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898109662&rft_id=info:pmid/25588326&rfr_iscdi=true