Spectrin Tetramer Formation Is Not Required for Viable Development in Drosophila
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetrame...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-01, Vol.290 (2), p.706-715 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 715 |
---|---|
container_issue | 2 |
container_start_page | 706 |
container_title | The Journal of biological chemistry |
container_volume | 290 |
creator | Khanna, Mansi R. Mattie, Floyd J. Browder, Kristen C. Radyk, Megan D. Crilly, Stephanie E. Bakerink, Katelyn J. Harper, Sandra L. Speicher, David W. Thomas, Graham H. |
description | The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-specR22S, a tetramerization site mutant homologous to the pathological α-specR28S allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrinR22S rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.Underneath the membrane of most animal cells is a network (membrane skeleton) assembled using tetramers of the protein spectrin.
Although spectrins are essential proteins, tetramer formation is surprisingly unimportant for Drosophila development.
The major roles of the membrane skeleton do not require a conventional network.
The ubiquitous model of the spectrin-based membrane skeleton has limited applicability. |
doi_str_mv | 10.1074/jbc.M114.615427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4294495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820578460</els_id><sourcerecordid>1645779984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8352d64bf8cfee9b67656b29d8450821150d441f3ccd4e21daccc36f3e6599203</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxa2qVdnSnrkhH3vJ4s_EviAhviUoqKUVN8uxJ2CUxMHOrsR_X6MFRA_1ZQ7-zZuZ9xDaoWRJSSP2Hlq3vKRULGsqBWs-oAUlildc0tuPaEEIo5VmUm2hLzk_kPKEpp_RFpNcUSbUAl3_msDNKYz4BuZkB0j4JKbBziGO-DzjH3HGP-FxFRJ43MWE_wTb9oCPYA19nAYYZ1yaj1LMcboPvf2KPnW2z_DtpW6j3yfHN4dn1cXV6fnhwUXlhOBzpbhkvhZtp1wHoNu6qWXdMu2VkEQxSiXxQtCOO-cFMOqtc47XHYdaas0I30b7G91p1Q7gXVkk2d5MKQw2PZlog_n3Zwz35i6ujWBaCC2LwPcXgRQfV5BnM4TsoO_tCHGVDa2FbBqtlSjo3gZ15cycoHsbQ4l5zsGUHMxzDmaTQ-nYfb_dG_9qfAH0BoDi0TpAMtkFGB344rSbjY_hv-J_AVl4mD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645779984</pqid></control><display><type>article</type><title>Spectrin Tetramer Formation Is Not Required for Viable Development in Drosophila</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Khanna, Mansi R. ; Mattie, Floyd J. ; Browder, Kristen C. ; Radyk, Megan D. ; Crilly, Stephanie E. ; Bakerink, Katelyn J. ; Harper, Sandra L. ; Speicher, David W. ; Thomas, Graham H.</creator><creatorcontrib>Khanna, Mansi R. ; Mattie, Floyd J. ; Browder, Kristen C. ; Radyk, Megan D. ; Crilly, Stephanie E. ; Bakerink, Katelyn J. ; Harper, Sandra L. ; Speicher, David W. ; Thomas, Graham H.</creatorcontrib><description>The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-specR22S, a tetramerization site mutant homologous to the pathological α-specR28S allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrinR22S rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.Underneath the membrane of most animal cells is a network (membrane skeleton) assembled using tetramers of the protein spectrin.
Although spectrins are essential proteins, tetramer formation is surprisingly unimportant for Drosophila development.
The major roles of the membrane skeleton do not require a conventional network.
The ubiquitous model of the spectrin-based membrane skeleton has limited applicability.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.615427</identifier><identifier>PMID: 25381248</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin Cytoskeleton - genetics ; Actin Cytoskeleton - metabolism ; Actins - genetics ; Actins - metabolism ; Animals ; Cell Biology ; Cell Membrane - genetics ; Cell Membrane - metabolism ; Cytoskeleton ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - metabolism ; Humans ; Membrane Protein ; Membrane Skeleton ; Mutation ; Protein Assembly ; Protein Multimerization ; Spectrin ; Spectrin - chemistry ; Spectrin - genetics</subject><ispartof>The Journal of biological chemistry, 2015-01, Vol.290 (2), p.706-715</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8352d64bf8cfee9b67656b29d8450821150d441f3ccd4e21daccc36f3e6599203</citedby><cites>FETCH-LOGICAL-c443t-8352d64bf8cfee9b67656b29d8450821150d441f3ccd4e21daccc36f3e6599203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294495/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294495/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25381248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanna, Mansi R.</creatorcontrib><creatorcontrib>Mattie, Floyd J.</creatorcontrib><creatorcontrib>Browder, Kristen C.</creatorcontrib><creatorcontrib>Radyk, Megan D.</creatorcontrib><creatorcontrib>Crilly, Stephanie E.</creatorcontrib><creatorcontrib>Bakerink, Katelyn J.</creatorcontrib><creatorcontrib>Harper, Sandra L.</creatorcontrib><creatorcontrib>Speicher, David W.</creatorcontrib><creatorcontrib>Thomas, Graham H.</creatorcontrib><title>Spectrin Tetramer Formation Is Not Required for Viable Development in Drosophila</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-specR22S, a tetramerization site mutant homologous to the pathological α-specR28S allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrinR22S rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.Underneath the membrane of most animal cells is a network (membrane skeleton) assembled using tetramers of the protein spectrin.
Although spectrins are essential proteins, tetramer formation is surprisingly unimportant for Drosophila development.
The major roles of the membrane skeleton do not require a conventional network.
The ubiquitous model of the spectrin-based membrane skeleton has limited applicability.</description><subject>Actin Cytoskeleton - genetics</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Cell Biology</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cytoskeleton</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Humans</subject><subject>Membrane Protein</subject><subject>Membrane Skeleton</subject><subject>Mutation</subject><subject>Protein Assembly</subject><subject>Protein Multimerization</subject><subject>Spectrin</subject><subject>Spectrin - chemistry</subject><subject>Spectrin - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1P3DAQxa2qVdnSnrkhH3vJ4s_EviAhviUoqKUVN8uxJ2CUxMHOrsR_X6MFRA_1ZQ7-zZuZ9xDaoWRJSSP2Hlq3vKRULGsqBWs-oAUlildc0tuPaEEIo5VmUm2hLzk_kPKEpp_RFpNcUSbUAl3_msDNKYz4BuZkB0j4JKbBziGO-DzjH3HGP-FxFRJ43MWE_wTb9oCPYA19nAYYZ1yaj1LMcboPvf2KPnW2z_DtpW6j3yfHN4dn1cXV6fnhwUXlhOBzpbhkvhZtp1wHoNu6qWXdMu2VkEQxSiXxQtCOO-cFMOqtc47XHYdaas0I30b7G91p1Q7gXVkk2d5MKQw2PZlog_n3Zwz35i6ujWBaCC2LwPcXgRQfV5BnM4TsoO_tCHGVDa2FbBqtlSjo3gZ15cycoHsbQ4l5zsGUHMxzDmaTQ-nYfb_dG_9qfAH0BoDi0TpAMtkFGB344rSbjY_hv-J_AVl4mD4</recordid><startdate>20150109</startdate><enddate>20150109</enddate><creator>Khanna, Mansi R.</creator><creator>Mattie, Floyd J.</creator><creator>Browder, Kristen C.</creator><creator>Radyk, Megan D.</creator><creator>Crilly, Stephanie E.</creator><creator>Bakerink, Katelyn J.</creator><creator>Harper, Sandra L.</creator><creator>Speicher, David W.</creator><creator>Thomas, Graham H.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150109</creationdate><title>Spectrin Tetramer Formation Is Not Required for Viable Development in Drosophila</title><author>Khanna, Mansi R. ; Mattie, Floyd J. ; Browder, Kristen C. ; Radyk, Megan D. ; Crilly, Stephanie E. ; Bakerink, Katelyn J. ; Harper, Sandra L. ; Speicher, David W. ; Thomas, Graham H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8352d64bf8cfee9b67656b29d8450821150d441f3ccd4e21daccc36f3e6599203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actin Cytoskeleton - genetics</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Cell Biology</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cytoskeleton</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Humans</topic><topic>Membrane Protein</topic><topic>Membrane Skeleton</topic><topic>Mutation</topic><topic>Protein Assembly</topic><topic>Protein Multimerization</topic><topic>Spectrin</topic><topic>Spectrin - chemistry</topic><topic>Spectrin - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanna, Mansi R.</creatorcontrib><creatorcontrib>Mattie, Floyd J.</creatorcontrib><creatorcontrib>Browder, Kristen C.</creatorcontrib><creatorcontrib>Radyk, Megan D.</creatorcontrib><creatorcontrib>Crilly, Stephanie E.</creatorcontrib><creatorcontrib>Bakerink, Katelyn J.</creatorcontrib><creatorcontrib>Harper, Sandra L.</creatorcontrib><creatorcontrib>Speicher, David W.</creatorcontrib><creatorcontrib>Thomas, Graham H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanna, Mansi R.</au><au>Mattie, Floyd J.</au><au>Browder, Kristen C.</au><au>Radyk, Megan D.</au><au>Crilly, Stephanie E.</au><au>Bakerink, Katelyn J.</au><au>Harper, Sandra L.</au><au>Speicher, David W.</au><au>Thomas, Graham H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrin Tetramer Formation Is Not Required for Viable Development in Drosophila</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-01-09</date><risdate>2015</risdate><volume>290</volume><issue>2</issue><spage>706</spage><epage>715</epage><pages>706-715</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-specR22S, a tetramerization site mutant homologous to the pathological α-specR28S allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrinR22S rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.Underneath the membrane of most animal cells is a network (membrane skeleton) assembled using tetramers of the protein spectrin.
Although spectrins are essential proteins, tetramer formation is surprisingly unimportant for Drosophila development.
The major roles of the membrane skeleton do not require a conventional network.
The ubiquitous model of the spectrin-based membrane skeleton has limited applicability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25381248</pmid><doi>10.1074/jbc.M114.615427</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2015-01, Vol.290 (2), p.706-715 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4294495 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Actin Cytoskeleton - genetics Actin Cytoskeleton - metabolism Actins - genetics Actins - metabolism Animals Cell Biology Cell Membrane - genetics Cell Membrane - metabolism Cytoskeleton Drosophila Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Humans Membrane Protein Membrane Skeleton Mutation Protein Assembly Protein Multimerization Spectrin Spectrin - chemistry Spectrin - genetics |
title | Spectrin Tetramer Formation Is Not Required for Viable Development in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrin%20Tetramer%20Formation%20Is%20Not%20Required%20for%20Viable%20Development%20in%20Drosophila&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Khanna,%20Mansi%20R.&rft.date=2015-01-09&rft.volume=290&rft.issue=2&rft.spage=706&rft.epage=715&rft.pages=706-715&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.615427&rft_dat=%3Cproquest_pubme%3E1645779984%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645779984&rft_id=info:pmid/25381248&rft_els_id=S0021925820578460&rfr_iscdi=true |