DAMP signaling is a key pathway inducing immune modulation after brain injury

Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain isc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2015-01, Vol.35 (2), p.583-598
Hauptverfasser: Liesz, Arthur, Dalpke, Alexander, Mracsko, Eva, Antoine, Daniel J, Roth, Stefan, Zhou, Wei, Yang, Huan, Na, Shin-Young, Akhisaroglu, Mustafa, Fleming, Thomas, Eigenbrod, Tatjana, Nawroth, Peter P, Tracey, Kevin J, Veltkamp, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 2
container_start_page 583
container_title The Journal of neuroscience
container_volume 35
creator Liesz, Arthur
Dalpke, Alexander
Mracsko, Eva
Antoine, Daniel J
Roth, Stefan
Zhou, Wei
Yang, Huan
Na, Shin-Young
Akhisaroglu, Mustafa
Fleming, Thomas
Eigenbrod, Tatjana
Nawroth, Peter P
Tracey, Kevin J
Veltkamp, Roland
description Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We analyzed release of HMGB1 isoforms by mass spectrometry and investigated its inflammatory potency and signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that the cytokine-inducing, fully reduced isoform of HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions.
doi_str_mv 10.1523/JNEUROSCI.2439-14.2015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4293412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765982522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-b8710599260e72d37b2af4bde471d495554ed327b0ac142cd3eea372ded2e5d43</originalsourceid><addsrcrecordid>eNpVkclOwzAQhi0EgrK8QuUjlxSvcXNBQqVAUVnEcraceNoaEqfYCahvT8pSwWkO_zKj-RDqUzKgkvGT69vx88Pd42gyYIJnCRUDRqjcQr1OzRImCN1GPcIUSVKhxB7aj_GFEKIIVbtoj0k5zJTkPXRzfnZzj6Obe1M6P8cuYoNfYYWXpll8mBV23rbFl1JVrQdc1bYtTeNqj82sgYDzYJzvbC9tWB2inZkpIxz9zAP0fDF-Gl0l07vLyehsmhQyTZskHypKZJaxlIBilqucmZnILQhFrciklAIsZyonpqCCFZYDGN45wTKQVvADdPrdu2zzCmwBvgmm1MvgKhNWujZO_1e8W-h5_a4Fy7igrCs4_ikI9VsLsdGViwWUpfFQt1FTlcpsyCRbW9NvaxHqGAPMNmso0WsWesNCr1loKvSaRRfs_z1yE_t9Pv8EWyuHpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765982522</pqid></control><display><type>article</type><title>DAMP signaling is a key pathway inducing immune modulation after brain injury</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liesz, Arthur ; Dalpke, Alexander ; Mracsko, Eva ; Antoine, Daniel J ; Roth, Stefan ; Zhou, Wei ; Yang, Huan ; Na, Shin-Young ; Akhisaroglu, Mustafa ; Fleming, Thomas ; Eigenbrod, Tatjana ; Nawroth, Peter P ; Tracey, Kevin J ; Veltkamp, Roland</creator><creatorcontrib>Liesz, Arthur ; Dalpke, Alexander ; Mracsko, Eva ; Antoine, Daniel J ; Roth, Stefan ; Zhou, Wei ; Yang, Huan ; Na, Shin-Young ; Akhisaroglu, Mustafa ; Fleming, Thomas ; Eigenbrod, Tatjana ; Nawroth, Peter P ; Tracey, Kevin J ; Veltkamp, Roland</creatorcontrib><description>Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We analyzed release of HMGB1 isoforms by mass spectrometry and investigated its inflammatory potency and signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that the cytokine-inducing, fully reduced isoform of HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2439-14.2015</identifier><identifier>PMID: 25589753</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Animals ; Bone Marrow - immunology ; Case-Control Studies ; Cytokines - blood ; Female ; HMGB1 Protein - genetics ; HMGB1 Protein - metabolism ; Humans ; Infarction, Middle Cerebral Artery - immunology ; Infarction, Middle Cerebral Artery - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic - genetics ; Receptors, Immunologic - metabolism ; Signal Transduction ; Spleen - immunology ; Stroke - immunology ; Stroke - metabolism ; T-Lymphocytes - immunology</subject><ispartof>The Journal of neuroscience, 2015-01, Vol.35 (2), p.583-598</ispartof><rights>Copyright © 2015 the authors 0270-6474/15/350583-16$15.00/0.</rights><rights>Copyright © 2015 the authors 0270-6474/15/350583-16$15.00/0 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-b8710599260e72d37b2af4bde471d495554ed327b0ac142cd3eea372ded2e5d43</citedby><cites>FETCH-LOGICAL-c566t-b8710599260e72d37b2af4bde471d495554ed327b0ac142cd3eea372ded2e5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293412/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293412/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25589753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liesz, Arthur</creatorcontrib><creatorcontrib>Dalpke, Alexander</creatorcontrib><creatorcontrib>Mracsko, Eva</creatorcontrib><creatorcontrib>Antoine, Daniel J</creatorcontrib><creatorcontrib>Roth, Stefan</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Yang, Huan</creatorcontrib><creatorcontrib>Na, Shin-Young</creatorcontrib><creatorcontrib>Akhisaroglu, Mustafa</creatorcontrib><creatorcontrib>Fleming, Thomas</creatorcontrib><creatorcontrib>Eigenbrod, Tatjana</creatorcontrib><creatorcontrib>Nawroth, Peter P</creatorcontrib><creatorcontrib>Tracey, Kevin J</creatorcontrib><creatorcontrib>Veltkamp, Roland</creatorcontrib><title>DAMP signaling is a key pathway inducing immune modulation after brain injury</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We analyzed release of HMGB1 isoforms by mass spectrometry and investigated its inflammatory potency and signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that the cytokine-inducing, fully reduced isoform of HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Animals</subject><subject>Bone Marrow - immunology</subject><subject>Case-Control Studies</subject><subject>Cytokines - blood</subject><subject>Female</subject><subject>HMGB1 Protein - genetics</subject><subject>HMGB1 Protein - metabolism</subject><subject>Humans</subject><subject>Infarction, Middle Cerebral Artery - immunology</subject><subject>Infarction, Middle Cerebral Artery - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Middle Aged</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Receptor for Advanced Glycation End Products</subject><subject>Receptors, Immunologic - genetics</subject><subject>Receptors, Immunologic - metabolism</subject><subject>Signal Transduction</subject><subject>Spleen - immunology</subject><subject>Stroke - immunology</subject><subject>Stroke - metabolism</subject><subject>T-Lymphocytes - immunology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkclOwzAQhi0EgrK8QuUjlxSvcXNBQqVAUVnEcraceNoaEqfYCahvT8pSwWkO_zKj-RDqUzKgkvGT69vx88Pd42gyYIJnCRUDRqjcQr1OzRImCN1GPcIUSVKhxB7aj_GFEKIIVbtoj0k5zJTkPXRzfnZzj6Obe1M6P8cuYoNfYYWXpll8mBV23rbFl1JVrQdc1bYtTeNqj82sgYDzYJzvbC9tWB2inZkpIxz9zAP0fDF-Gl0l07vLyehsmhQyTZskHypKZJaxlIBilqucmZnILQhFrciklAIsZyonpqCCFZYDGN45wTKQVvADdPrdu2zzCmwBvgmm1MvgKhNWujZO_1e8W-h5_a4Fy7igrCs4_ikI9VsLsdGViwWUpfFQt1FTlcpsyCRbW9NvaxHqGAPMNmso0WsWesNCr1loKvSaRRfs_z1yE_t9Pv8EWyuHpQ</recordid><startdate>20150114</startdate><enddate>20150114</enddate><creator>Liesz, Arthur</creator><creator>Dalpke, Alexander</creator><creator>Mracsko, Eva</creator><creator>Antoine, Daniel J</creator><creator>Roth, Stefan</creator><creator>Zhou, Wei</creator><creator>Yang, Huan</creator><creator>Na, Shin-Young</creator><creator>Akhisaroglu, Mustafa</creator><creator>Fleming, Thomas</creator><creator>Eigenbrod, Tatjana</creator><creator>Nawroth, Peter P</creator><creator>Tracey, Kevin J</creator><creator>Veltkamp, Roland</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20150114</creationdate><title>DAMP signaling is a key pathway inducing immune modulation after brain injury</title><author>Liesz, Arthur ; Dalpke, Alexander ; Mracsko, Eva ; Antoine, Daniel J ; Roth, Stefan ; Zhou, Wei ; Yang, Huan ; Na, Shin-Young ; Akhisaroglu, Mustafa ; Fleming, Thomas ; Eigenbrod, Tatjana ; Nawroth, Peter P ; Tracey, Kevin J ; Veltkamp, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-b8710599260e72d37b2af4bde471d495554ed327b0ac142cd3eea372ded2e5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Animals</topic><topic>Bone Marrow - immunology</topic><topic>Case-Control Studies</topic><topic>Cytokines - blood</topic><topic>Female</topic><topic>HMGB1 Protein - genetics</topic><topic>HMGB1 Protein - metabolism</topic><topic>Humans</topic><topic>Infarction, Middle Cerebral Artery - immunology</topic><topic>Infarction, Middle Cerebral Artery - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Middle Aged</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Receptor for Advanced Glycation End Products</topic><topic>Receptors, Immunologic - genetics</topic><topic>Receptors, Immunologic - metabolism</topic><topic>Signal Transduction</topic><topic>Spleen - immunology</topic><topic>Stroke - immunology</topic><topic>Stroke - metabolism</topic><topic>T-Lymphocytes - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liesz, Arthur</creatorcontrib><creatorcontrib>Dalpke, Alexander</creatorcontrib><creatorcontrib>Mracsko, Eva</creatorcontrib><creatorcontrib>Antoine, Daniel J</creatorcontrib><creatorcontrib>Roth, Stefan</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Yang, Huan</creatorcontrib><creatorcontrib>Na, Shin-Young</creatorcontrib><creatorcontrib>Akhisaroglu, Mustafa</creatorcontrib><creatorcontrib>Fleming, Thomas</creatorcontrib><creatorcontrib>Eigenbrod, Tatjana</creatorcontrib><creatorcontrib>Nawroth, Peter P</creatorcontrib><creatorcontrib>Tracey, Kevin J</creatorcontrib><creatorcontrib>Veltkamp, Roland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liesz, Arthur</au><au>Dalpke, Alexander</au><au>Mracsko, Eva</au><au>Antoine, Daniel J</au><au>Roth, Stefan</au><au>Zhou, Wei</au><au>Yang, Huan</au><au>Na, Shin-Young</au><au>Akhisaroglu, Mustafa</au><au>Fleming, Thomas</au><au>Eigenbrod, Tatjana</au><au>Nawroth, Peter P</au><au>Tracey, Kevin J</au><au>Veltkamp, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DAMP signaling is a key pathway inducing immune modulation after brain injury</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2015-01-14</date><risdate>2015</risdate><volume>35</volume><issue>2</issue><spage>583</spage><epage>598</epage><pages>583-598</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We analyzed release of HMGB1 isoforms by mass spectrometry and investigated its inflammatory potency and signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that the cytokine-inducing, fully reduced isoform of HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>25589753</pmid><doi>10.1523/JNEUROSCI.2439-14.2015</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2015-01, Vol.35 (2), p.583-598
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4293412
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adult
Aged
Aged, 80 and over
Animals
Bone Marrow - immunology
Case-Control Studies
Cytokines - blood
Female
HMGB1 Protein - genetics
HMGB1 Protein - metabolism
Humans
Infarction, Middle Cerebral Artery - immunology
Infarction, Middle Cerebral Artery - metabolism
Male
Mice
Mice, Inbred C57BL
Middle Aged
Protein Isoforms - genetics
Protein Isoforms - metabolism
Receptor for Advanced Glycation End Products
Receptors, Immunologic - genetics
Receptors, Immunologic - metabolism
Signal Transduction
Spleen - immunology
Stroke - immunology
Stroke - metabolism
T-Lymphocytes - immunology
title DAMP signaling is a key pathway inducing immune modulation after brain injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DAMP%20signaling%20is%20a%20key%20pathway%20inducing%20immune%20modulation%20after%20brain%20injury&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Liesz,%20Arthur&rft.date=2015-01-14&rft.volume=35&rft.issue=2&rft.spage=583&rft.epage=598&rft.pages=583-598&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2439-14.2015&rft_dat=%3Cproquest_pubme%3E1765982522%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765982522&rft_id=info:pmid/25589753&rfr_iscdi=true