Presynaptic inhibition of spinal sensory feedback ensures smooth movement

The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo–axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory–mot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2014-05, Vol.509 (7498), p.43-48
Hauptverfasser: Fink, Andrew J. P., Croce, Katherine R., Huang, Z. Josh, Abbott, L. F., Jessell, Thomas M., Azim, Eiman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 7498
container_start_page 43
container_title Nature (London)
container_volume 509
creator Fink, Andrew J. P.
Croce, Katherine R.
Huang, Z. Josh
Abbott, L. F.
Jessell, Thomas M.
Azim, Eiman
description The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo–axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory–motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2 -expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement. A population of spinal interneurons that form axo–axonic connections with the terminals of proprioceptive afferents are shown to mediate presynaptic inhibition; their ablation elicits harmonic oscillations during goal-directed forelimb movements, which can be modelled as the consequence of an increase in sensory feedback gain. How presynaptic inhibition ensures smooth limb movement Humans and other animals execute limb movements with a seemingly effortless precision that relies on sensory feedback and its refinement by inhibitory microcircuits. A new study identifies presynaptic inhibition in the spinal cord, a regulatory filter mediated by Gad2 -expressing GABAergic interneurons that form connections with the terminals of sensory afferents, as part of a hardwired gain control system crucial for the smooth execution of movement. Thomas Jessell and colleagues demonstrate that activation of Gad2 -expressing neurons inhibits neurotransmitter release from sensory afferents. Selective ablation of these neurons in mice causes pronounced oscillations during goal-directed forelimb reaching movements, a behaviour captured by a model of sensory feedback at high gain.
doi_str_mv 10.1038/nature13276
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4292914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A367420990</galeid><sourcerecordid>A367420990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720t-253acb7b6f6bbeef4f77d896274e8f2444694e215d45d3ef7ce662f3eb2920dd3</originalsourceid><addsrcrecordid>eNpt0k1v1DAQBmALgehSOHFHEVxAkOLYjp1ckKqKj5Uqgfg4W44zzrokdmonVfff12VL2UVRDlHix-9Y40HoeYFPCkyr905Nc4CCEsEfoFXBBM8Zr8RDtMKYVDmuKD9CT2K8wBiXhWCP0RFhomKkKFdo_S1A3Do1TlZn1m1sYyfrXeZNFkfrVJ9FcNGHbWYA2kbp31n6TvViFgfvp002-CsYwE1P0SOj-gjP7t7H6Nenjz_PvuTnXz-vz07Pcy0InnJSUqUb0XDDmwbAMCNEW9WcCAaVIYwxXjNIZ2tZ2VIwQgPnxFBoSE1w29Jj9GGXO87NAK1OpYPq5RjsoMJWemXl4YqzG9n5K8lSQF2wFPD6LiD4yxniJAcbNfS9cuDnKIuSFJTWGItEX_1HL_wcUlf-KEYYFhX_pzrVg7TO-FRX34bKU8oFI7iucVL5gurAQTqkd2Bs-n3gXy54PdpLuY9OFlB6WhisXkx9c7AhmQmup07NMcr1j--H9u3O6uBjDGDum1xgeTt6cm_0kn6xfy_39u-sJfBuB2Jach2EvWYu5N0A1ZriFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524240786</pqid></control><display><type>article</type><title>Presynaptic inhibition of spinal sensory feedback ensures smooth movement</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Fink, Andrew J. P. ; Croce, Katherine R. ; Huang, Z. Josh ; Abbott, L. F. ; Jessell, Thomas M. ; Azim, Eiman</creator><creatorcontrib>Fink, Andrew J. P. ; Croce, Katherine R. ; Huang, Z. Josh ; Abbott, L. F. ; Jessell, Thomas M. ; Azim, Eiman</creatorcontrib><description>The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo–axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory–motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2 -expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement. A population of spinal interneurons that form axo–axonic connections with the terminals of proprioceptive afferents are shown to mediate presynaptic inhibition; their ablation elicits harmonic oscillations during goal-directed forelimb movements, which can be modelled as the consequence of an increase in sensory feedback gain. How presynaptic inhibition ensures smooth limb movement Humans and other animals execute limb movements with a seemingly effortless precision that relies on sensory feedback and its refinement by inhibitory microcircuits. A new study identifies presynaptic inhibition in the spinal cord, a regulatory filter mediated by Gad2 -expressing GABAergic interneurons that form connections with the terminals of sensory afferents, as part of a hardwired gain control system crucial for the smooth execution of movement. Thomas Jessell and colleagues demonstrate that activation of Gad2 -expressing neurons inhibits neurotransmitter release from sensory afferents. Selective ablation of these neurons in mice causes pronounced oscillations during goal-directed forelimb reaching movements, a behaviour captured by a model of sensory feedback at high gain.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature13276</identifier><identifier>PMID: 24784215</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/1 ; 14/19 ; 42/41 ; 42/44 ; 631/378/1697/1691 ; 631/378/2629/1779 ; 631/378/2632/1664 ; 631/378/2632/1823 ; 64/60 ; 9/74 ; Animal locomotion ; Animals ; Axons - physiology ; Control systems ; Efferent Pathways - physiology ; Feedback, Sensory - physiology ; Female ; Forelimb - physiology ; GABAergic Neurons - cytology ; GABAergic Neurons - metabolism ; Glutamate Decarboxylase - genetics ; Glutamate Decarboxylase - metabolism ; Humanities and Social Sciences ; Interneurons - cytology ; Interneurons - metabolism ; Male ; Mice ; Models, Neurological ; Motor Skills - physiology ; Movement - physiology ; multidisciplinary ; Neural Inhibition - physiology ; Neurology ; Neurons ; Neurotransmitter Agents - secretion ; Physiological research ; Presynaptic Terminals - physiology ; Rodents ; Science ; Spinal cord ; Spinal Cord - physiology ; Studies</subject><ispartof>Nature (London), 2014-05, Vol.509 (7498), p.43-48</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 1, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720t-253acb7b6f6bbeef4f77d896274e8f2444694e215d45d3ef7ce662f3eb2920dd3</citedby><cites>FETCH-LOGICAL-c720t-253acb7b6f6bbeef4f77d896274e8f2444694e215d45d3ef7ce662f3eb2920dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature13276$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature13276$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24784215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fink, Andrew J. P.</creatorcontrib><creatorcontrib>Croce, Katherine R.</creatorcontrib><creatorcontrib>Huang, Z. Josh</creatorcontrib><creatorcontrib>Abbott, L. F.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><creatorcontrib>Azim, Eiman</creatorcontrib><title>Presynaptic inhibition of spinal sensory feedback ensures smooth movement</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo–axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory–motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2 -expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement. A population of spinal interneurons that form axo–axonic connections with the terminals of proprioceptive afferents are shown to mediate presynaptic inhibition; their ablation elicits harmonic oscillations during goal-directed forelimb movements, which can be modelled as the consequence of an increase in sensory feedback gain. How presynaptic inhibition ensures smooth limb movement Humans and other animals execute limb movements with a seemingly effortless precision that relies on sensory feedback and its refinement by inhibitory microcircuits. A new study identifies presynaptic inhibition in the spinal cord, a regulatory filter mediated by Gad2 -expressing GABAergic interneurons that form connections with the terminals of sensory afferents, as part of a hardwired gain control system crucial for the smooth execution of movement. Thomas Jessell and colleagues demonstrate that activation of Gad2 -expressing neurons inhibits neurotransmitter release from sensory afferents. Selective ablation of these neurons in mice causes pronounced oscillations during goal-directed forelimb reaching movements, a behaviour captured by a model of sensory feedback at high gain.</description><subject>13/51</subject><subject>14/1</subject><subject>14/19</subject><subject>42/41</subject><subject>42/44</subject><subject>631/378/1697/1691</subject><subject>631/378/2629/1779</subject><subject>631/378/2632/1664</subject><subject>631/378/2632/1823</subject><subject>64/60</subject><subject>9/74</subject><subject>Animal locomotion</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Control systems</subject><subject>Efferent Pathways - physiology</subject><subject>Feedback, Sensory - physiology</subject><subject>Female</subject><subject>Forelimb - physiology</subject><subject>GABAergic Neurons - cytology</subject><subject>GABAergic Neurons - metabolism</subject><subject>Glutamate Decarboxylase - genetics</subject><subject>Glutamate Decarboxylase - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Interneurons - cytology</subject><subject>Interneurons - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Motor Skills - physiology</subject><subject>Movement - physiology</subject><subject>multidisciplinary</subject><subject>Neural Inhibition - physiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurotransmitter Agents - secretion</subject><subject>Physiological research</subject><subject>Presynaptic Terminals - physiology</subject><subject>Rodents</subject><subject>Science</subject><subject>Spinal cord</subject><subject>Spinal Cord - physiology</subject><subject>Studies</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0k1v1DAQBmALgehSOHFHEVxAkOLYjp1ckKqKj5Uqgfg4W44zzrokdmonVfff12VL2UVRDlHix-9Y40HoeYFPCkyr905Nc4CCEsEfoFXBBM8Zr8RDtMKYVDmuKD9CT2K8wBiXhWCP0RFhomKkKFdo_S1A3Do1TlZn1m1sYyfrXeZNFkfrVJ9FcNGHbWYA2kbp31n6TvViFgfvp002-CsYwE1P0SOj-gjP7t7H6Nenjz_PvuTnXz-vz07Pcy0InnJSUqUb0XDDmwbAMCNEW9WcCAaVIYwxXjNIZ2tZ2VIwQgPnxFBoSE1w29Jj9GGXO87NAK1OpYPq5RjsoMJWemXl4YqzG9n5K8lSQF2wFPD6LiD4yxniJAcbNfS9cuDnKIuSFJTWGItEX_1HL_wcUlf-KEYYFhX_pzrVg7TO-FRX34bKU8oFI7iucVL5gurAQTqkd2Bs-n3gXy54PdpLuY9OFlB6WhisXkx9c7AhmQmup07NMcr1j--H9u3O6uBjDGDum1xgeTt6cm_0kn6xfy_39u-sJfBuB2Jach2EvWYu5N0A1ZriFg</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Fink, Andrew J. P.</creator><creator>Croce, Katherine R.</creator><creator>Huang, Z. Josh</creator><creator>Abbott, L. F.</creator><creator>Jessell, Thomas M.</creator><creator>Azim, Eiman</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140501</creationdate><title>Presynaptic inhibition of spinal sensory feedback ensures smooth movement</title><author>Fink, Andrew J. P. ; Croce, Katherine R. ; Huang, Z. Josh ; Abbott, L. F. ; Jessell, Thomas M. ; Azim, Eiman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720t-253acb7b6f6bbeef4f77d896274e8f2444694e215d45d3ef7ce662f3eb2920dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/51</topic><topic>14/1</topic><topic>14/19</topic><topic>42/41</topic><topic>42/44</topic><topic>631/378/1697/1691</topic><topic>631/378/2629/1779</topic><topic>631/378/2632/1664</topic><topic>631/378/2632/1823</topic><topic>64/60</topic><topic>9/74</topic><topic>Animal locomotion</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Control systems</topic><topic>Efferent Pathways - physiology</topic><topic>Feedback, Sensory - physiology</topic><topic>Female</topic><topic>Forelimb - physiology</topic><topic>GABAergic Neurons - cytology</topic><topic>GABAergic Neurons - metabolism</topic><topic>Glutamate Decarboxylase - genetics</topic><topic>Glutamate Decarboxylase - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Interneurons - cytology</topic><topic>Interneurons - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Motor Skills - physiology</topic><topic>Movement - physiology</topic><topic>multidisciplinary</topic><topic>Neural Inhibition - physiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurotransmitter Agents - secretion</topic><topic>Physiological research</topic><topic>Presynaptic Terminals - physiology</topic><topic>Rodents</topic><topic>Science</topic><topic>Spinal cord</topic><topic>Spinal Cord - physiology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fink, Andrew J. P.</creatorcontrib><creatorcontrib>Croce, Katherine R.</creatorcontrib><creatorcontrib>Huang, Z. Josh</creatorcontrib><creatorcontrib>Abbott, L. F.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><creatorcontrib>Azim, Eiman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fink, Andrew J. P.</au><au>Croce, Katherine R.</au><au>Huang, Z. Josh</au><au>Abbott, L. F.</au><au>Jessell, Thomas M.</au><au>Azim, Eiman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic inhibition of spinal sensory feedback ensures smooth movement</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>509</volume><issue>7498</issue><spage>43</spage><epage>48</epage><pages>43-48</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo–axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory–motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2 -expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement. A population of spinal interneurons that form axo–axonic connections with the terminals of proprioceptive afferents are shown to mediate presynaptic inhibition; their ablation elicits harmonic oscillations during goal-directed forelimb movements, which can be modelled as the consequence of an increase in sensory feedback gain. How presynaptic inhibition ensures smooth limb movement Humans and other animals execute limb movements with a seemingly effortless precision that relies on sensory feedback and its refinement by inhibitory microcircuits. A new study identifies presynaptic inhibition in the spinal cord, a regulatory filter mediated by Gad2 -expressing GABAergic interneurons that form connections with the terminals of sensory afferents, as part of a hardwired gain control system crucial for the smooth execution of movement. Thomas Jessell and colleagues demonstrate that activation of Gad2 -expressing neurons inhibits neurotransmitter release from sensory afferents. Selective ablation of these neurons in mice causes pronounced oscillations during goal-directed forelimb reaching movements, a behaviour captured by a model of sensory feedback at high gain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24784215</pmid><doi>10.1038/nature13276</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2014-05, Vol.509 (7498), p.43-48
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4292914
source MEDLINE; Nature; SpringerNature Journals
subjects 13/51
14/1
14/19
42/41
42/44
631/378/1697/1691
631/378/2629/1779
631/378/2632/1664
631/378/2632/1823
64/60
9/74
Animal locomotion
Animals
Axons - physiology
Control systems
Efferent Pathways - physiology
Feedback, Sensory - physiology
Female
Forelimb - physiology
GABAergic Neurons - cytology
GABAergic Neurons - metabolism
Glutamate Decarboxylase - genetics
Glutamate Decarboxylase - metabolism
Humanities and Social Sciences
Interneurons - cytology
Interneurons - metabolism
Male
Mice
Models, Neurological
Motor Skills - physiology
Movement - physiology
multidisciplinary
Neural Inhibition - physiology
Neurology
Neurons
Neurotransmitter Agents - secretion
Physiological research
Presynaptic Terminals - physiology
Rodents
Science
Spinal cord
Spinal Cord - physiology
Studies
title Presynaptic inhibition of spinal sensory feedback ensures smooth movement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20inhibition%20of%20spinal%20sensory%20feedback%20ensures%20smooth%20movement&rft.jtitle=Nature%20(London)&rft.au=Fink,%20Andrew%20J.%20P.&rft.date=2014-05-01&rft.volume=509&rft.issue=7498&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature13276&rft_dat=%3Cgale_pubme%3EA367420990%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524240786&rft_id=info:pmid/24784215&rft_galeid=A367420990&rfr_iscdi=true