Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation
The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-01, Vol.112 (1), p.250-255 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 1 |
container_start_page | 250 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Mukherjee, Sampriti Bree, Anna C Liu, Jing Patrick, Joyce E Chien, Peter Kearns, Daniel B |
description | The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli.
Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration. |
doi_str_mv | 10.1073/pnas.1417419112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803126571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</originalsourceid><addsrcrecordid>eNqFkstv1DAQxi0EokvhzAlYiQuXtDN--4JUKl7SCg7Qs-U4ztZVNg52grT_PYl2WR6XnuYwv_n0fTNDyHOECwTFLofelQvkqDgaRPqArBAMVpIbeEhWAFRVmlN-Rp6UcgcARmh4TM6oEExTY1bky1XjhjHlahea6MbQrDepXw85jSF1-xLLOocy5ujHsn7nfOy6qazLVI-xm3u3-yHktnPb0HVujKl_Sh61rivh2bGek5sP779ff6o2Xz9-vr7aVF4wNlaSoa4hBC0b6UXLgqFUK1UH4VXThIaBFk2t6tqBw0bS1vmgTQDqhXMqcHZO3h50h6menfvQj9l1dshx5_LeJhftv50-3tpt-mk5NSgVzAJvjgI5_ZjmiHYXi19i9CFNxaIGhlQKhfejSkkppNHiflRyxkEKXAy8_g-9S1Pu56Ut1HwernERvDxQPqdScmhPERHs8gF2-QD75wPmiZd_b-bE_z75DLw4AsvkSQ6pxRlajL069FuXrNvmWOzNNwooAZALw4H9Aj0UwRk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645384815</pqid></control><display><type>article</type><title>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mukherjee, Sampriti ; Bree, Anna C ; Liu, Jing ; Patrick, Joyce E ; Chien, Peter ; Kearns, Daniel B</creator><creatorcontrib>Mukherjee, Sampriti ; Bree, Anna C ; Liu, Jing ; Patrick, Joyce E ; Chien, Peter ; Kearns, Daniel B</creatorcontrib><description>The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli.
Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1417419112</identifier><identifier>PMID: 25538299</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacillus subtilis ; Bacillus subtilis - cytology ; Bacillus subtilis - metabolism ; bacteria ; bacterial motility ; Bacterial Proteins - metabolism ; Biological Sciences ; Biosynthesis ; Density ; Flagella - metabolism ; flagellum ; Gram-positive bacteria ; Models, Biological ; Movement ; physiology ; Protease La - metabolism ; Proteases ; proteinases ; Proteins ; Proteolysis ; signal transduction ; swarming</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (1), p.250-255</ispartof><rights>Copyright National Academy of Sciences Jan 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</citedby><cites>FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291670/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291670/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25538299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Sampriti</creatorcontrib><creatorcontrib>Bree, Anna C</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Patrick, Joyce E</creatorcontrib><creatorcontrib>Chien, Peter</creatorcontrib><creatorcontrib>Kearns, Daniel B</creatorcontrib><title>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli.
Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - cytology</subject><subject>Bacillus subtilis - metabolism</subject><subject>bacteria</subject><subject>bacterial motility</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Density</subject><subject>Flagella - metabolism</subject><subject>flagellum</subject><subject>Gram-positive bacteria</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>physiology</subject><subject>Protease La - metabolism</subject><subject>Proteases</subject><subject>proteinases</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>signal transduction</subject><subject>swarming</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstv1DAQxi0EokvhzAlYiQuXtDN--4JUKl7SCg7Qs-U4ztZVNg52grT_PYl2WR6XnuYwv_n0fTNDyHOECwTFLofelQvkqDgaRPqArBAMVpIbeEhWAFRVmlN-Rp6UcgcARmh4TM6oEExTY1bky1XjhjHlahea6MbQrDepXw85jSF1-xLLOocy5ujHsn7nfOy6qazLVI-xm3u3-yHktnPb0HVujKl_Sh61rivh2bGek5sP779ff6o2Xz9-vr7aVF4wNlaSoa4hBC0b6UXLgqFUK1UH4VXThIaBFk2t6tqBw0bS1vmgTQDqhXMqcHZO3h50h6menfvQj9l1dshx5_LeJhftv50-3tpt-mk5NSgVzAJvjgI5_ZjmiHYXi19i9CFNxaIGhlQKhfejSkkppNHiflRyxkEKXAy8_g-9S1Pu56Ut1HwernERvDxQPqdScmhPERHs8gF2-QD75wPmiZd_b-bE_z75DLw4AsvkSQ6pxRlajL069FuXrNvmWOzNNwooAZALw4H9Aj0UwRk</recordid><startdate>20150106</startdate><enddate>20150106</enddate><creator>Mukherjee, Sampriti</creator><creator>Bree, Anna C</creator><creator>Liu, Jing</creator><creator>Patrick, Joyce E</creator><creator>Chien, Peter</creator><creator>Kearns, Daniel B</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150106</creationdate><title>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</title><author>Mukherjee, Sampriti ; Bree, Anna C ; Liu, Jing ; Patrick, Joyce E ; Chien, Peter ; Kearns, Daniel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - cytology</topic><topic>Bacillus subtilis - metabolism</topic><topic>bacteria</topic><topic>bacterial motility</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Density</topic><topic>Flagella - metabolism</topic><topic>flagellum</topic><topic>Gram-positive bacteria</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>physiology</topic><topic>Protease La - metabolism</topic><topic>Proteases</topic><topic>proteinases</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>signal transduction</topic><topic>swarming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sampriti</creatorcontrib><creatorcontrib>Bree, Anna C</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Patrick, Joyce E</creatorcontrib><creatorcontrib>Chien, Peter</creatorcontrib><creatorcontrib>Kearns, Daniel B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Sampriti</au><au>Bree, Anna C</au><au>Liu, Jing</au><au>Patrick, Joyce E</au><au>Chien, Peter</au><au>Kearns, Daniel B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-01-06</date><risdate>2015</risdate><volume>112</volume><issue>1</issue><spage>250</spage><epage>255</epage><pages>250-255</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli.
Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25538299</pmid><doi>10.1073/pnas.1417419112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (1), p.250-255 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291670 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacillus subtilis Bacillus subtilis - cytology Bacillus subtilis - metabolism bacteria bacterial motility Bacterial Proteins - metabolism Biological Sciences Biosynthesis Density Flagella - metabolism flagellum Gram-positive bacteria Models, Biological Movement physiology Protease La - metabolism Proteases proteinases Proteins Proteolysis signal transduction swarming |
title | Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptor-mediated%20Lon%20proteolysis%20restricts%20Bacillus%20subtilis%20hyperflagellation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mukherjee,%20Sampriti&rft.date=2015-01-06&rft.volume=112&rft.issue=1&rft.spage=250&rft.epage=255&rft.pages=250-255&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1417419112&rft_dat=%3Cproquest_pubme%3E1803126571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645384815&rft_id=info:pmid/25538299&rfr_iscdi=true |