Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation

The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-01, Vol.112 (1), p.250-255
Hauptverfasser: Mukherjee, Sampriti, Bree, Anna C, Liu, Jing, Patrick, Joyce E, Chien, Peter, Kearns, Daniel B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 1
container_start_page 250
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Mukherjee, Sampriti
Bree, Anna C
Liu, Jing
Patrick, Joyce E
Chien, Peter
Kearns, Daniel B
description The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli. Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration.
doi_str_mv 10.1073/pnas.1417419112
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803126571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</originalsourceid><addsrcrecordid>eNqFkstv1DAQxi0EokvhzAlYiQuXtDN--4JUKl7SCg7Qs-U4ztZVNg52grT_PYl2WR6XnuYwv_n0fTNDyHOECwTFLofelQvkqDgaRPqArBAMVpIbeEhWAFRVmlN-Rp6UcgcARmh4TM6oEExTY1bky1XjhjHlahea6MbQrDepXw85jSF1-xLLOocy5ujHsn7nfOy6qazLVI-xm3u3-yHktnPb0HVujKl_Sh61rivh2bGek5sP779ff6o2Xz9-vr7aVF4wNlaSoa4hBC0b6UXLgqFUK1UH4VXThIaBFk2t6tqBw0bS1vmgTQDqhXMqcHZO3h50h6menfvQj9l1dshx5_LeJhftv50-3tpt-mk5NSgVzAJvjgI5_ZjmiHYXi19i9CFNxaIGhlQKhfejSkkppNHiflRyxkEKXAy8_g-9S1Pu56Ut1HwernERvDxQPqdScmhPERHs8gF2-QD75wPmiZd_b-bE_z75DLw4AsvkSQ6pxRlajL069FuXrNvmWOzNNwooAZALw4H9Aj0UwRk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645384815</pqid></control><display><type>article</type><title>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mukherjee, Sampriti ; Bree, Anna C ; Liu, Jing ; Patrick, Joyce E ; Chien, Peter ; Kearns, Daniel B</creator><creatorcontrib>Mukherjee, Sampriti ; Bree, Anna C ; Liu, Jing ; Patrick, Joyce E ; Chien, Peter ; Kearns, Daniel B</creatorcontrib><description>The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli. Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1417419112</identifier><identifier>PMID: 25538299</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacillus subtilis ; Bacillus subtilis - cytology ; Bacillus subtilis - metabolism ; bacteria ; bacterial motility ; Bacterial Proteins - metabolism ; Biological Sciences ; Biosynthesis ; Density ; Flagella - metabolism ; flagellum ; Gram-positive bacteria ; Models, Biological ; Movement ; physiology ; Protease La - metabolism ; Proteases ; proteinases ; Proteins ; Proteolysis ; signal transduction ; swarming</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (1), p.250-255</ispartof><rights>Copyright National Academy of Sciences Jan 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</citedby><cites>FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291670/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291670/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25538299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Sampriti</creatorcontrib><creatorcontrib>Bree, Anna C</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Patrick, Joyce E</creatorcontrib><creatorcontrib>Chien, Peter</creatorcontrib><creatorcontrib>Kearns, Daniel B</creatorcontrib><title>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli. Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - cytology</subject><subject>Bacillus subtilis - metabolism</subject><subject>bacteria</subject><subject>bacterial motility</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Density</subject><subject>Flagella - metabolism</subject><subject>flagellum</subject><subject>Gram-positive bacteria</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>physiology</subject><subject>Protease La - metabolism</subject><subject>Proteases</subject><subject>proteinases</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>signal transduction</subject><subject>swarming</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstv1DAQxi0EokvhzAlYiQuXtDN--4JUKl7SCg7Qs-U4ztZVNg52grT_PYl2WR6XnuYwv_n0fTNDyHOECwTFLofelQvkqDgaRPqArBAMVpIbeEhWAFRVmlN-Rp6UcgcARmh4TM6oEExTY1bky1XjhjHlahea6MbQrDepXw85jSF1-xLLOocy5ujHsn7nfOy6qazLVI-xm3u3-yHktnPb0HVujKl_Sh61rivh2bGek5sP779ff6o2Xz9-vr7aVF4wNlaSoa4hBC0b6UXLgqFUK1UH4VXThIaBFk2t6tqBw0bS1vmgTQDqhXMqcHZO3h50h6menfvQj9l1dshx5_LeJhftv50-3tpt-mk5NSgVzAJvjgI5_ZjmiHYXi19i9CFNxaIGhlQKhfejSkkppNHiflRyxkEKXAy8_g-9S1Pu56Ut1HwernERvDxQPqdScmhPERHs8gF2-QD75wPmiZd_b-bE_z75DLw4AsvkSQ6pxRlajL069FuXrNvmWOzNNwooAZALw4H9Aj0UwRk</recordid><startdate>20150106</startdate><enddate>20150106</enddate><creator>Mukherjee, Sampriti</creator><creator>Bree, Anna C</creator><creator>Liu, Jing</creator><creator>Patrick, Joyce E</creator><creator>Chien, Peter</creator><creator>Kearns, Daniel B</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150106</creationdate><title>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</title><author>Mukherjee, Sampriti ; Bree, Anna C ; Liu, Jing ; Patrick, Joyce E ; Chien, Peter ; Kearns, Daniel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-6318b0ee86d6c5f3e922877be5c7dded3085db7bba0a1d62face89e02c5aa7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - cytology</topic><topic>Bacillus subtilis - metabolism</topic><topic>bacteria</topic><topic>bacterial motility</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Density</topic><topic>Flagella - metabolism</topic><topic>flagellum</topic><topic>Gram-positive bacteria</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>physiology</topic><topic>Protease La - metabolism</topic><topic>Proteases</topic><topic>proteinases</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>signal transduction</topic><topic>swarming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sampriti</creatorcontrib><creatorcontrib>Bree, Anna C</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Patrick, Joyce E</creatorcontrib><creatorcontrib>Chien, Peter</creatorcontrib><creatorcontrib>Kearns, Daniel B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Sampriti</au><au>Bree, Anna C</au><au>Liu, Jing</au><au>Patrick, Joyce E</au><au>Chien, Peter</au><au>Kearns, Daniel B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-01-06</date><risdate>2015</risdate><volume>112</volume><issue>1</issue><spage>250</spage><epage>255</epage><pages>250-255</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli. Significance Bacteria are thought to change physiology when in contact with a solid surface, but the mechanism of surface-contact signal transduction and the output physiological changes are often poorly understood. Here, we show that Bacillus subtilis controls flagellar density by regulatory proteolysis of the master flagellar activator protein SwrA. We further show that the broadly conserved AAA+ protease LonA degrades SwrA only in the presence of swarming motility inhibitor A, the first substrate-specific adaptor protein reported for the Lon family. We propose that surface contact inhibits proteolytic turnover such that SwrA accumulates and the cells synthesize flagella in excess of a critical threshold required for swarming migration.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25538299</pmid><doi>10.1073/pnas.1417419112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (1), p.250-255
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291670
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacillus subtilis
Bacillus subtilis - cytology
Bacillus subtilis - metabolism
bacteria
bacterial motility
Bacterial Proteins - metabolism
Biological Sciences
Biosynthesis
Density
Flagella - metabolism
flagellum
Gram-positive bacteria
Models, Biological
Movement
physiology
Protease La - metabolism
Proteases
proteinases
Proteins
Proteolysis
signal transduction
swarming
title Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptor-mediated%20Lon%20proteolysis%20restricts%20Bacillus%20subtilis%20hyperflagellation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mukherjee,%20Sampriti&rft.date=2015-01-06&rft.volume=112&rft.issue=1&rft.spage=250&rft.epage=255&rft.pages=250-255&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1417419112&rft_dat=%3Cproquest_pubme%3E1803126571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645384815&rft_id=info:pmid/25538299&rfr_iscdi=true