Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element

Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 2015-01, Vol.212 (1), p.107-120
Hauptverfasser: Majumder, Kinjal, Koues, Olivia I, Chan, Elizabeth A W, Kyle, Katherine E, Horowitz, Julie E, Yang-Iott, Katherine, Bassing, Craig H, Taniuchi, Ichiro, Krangel, Michael S, Oltz, Eugene M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 1
container_start_page 107
container_title The Journal of experimental medicine
container_volume 212
creator Majumder, Kinjal
Koues, Olivia I
Chan, Elizabeth A W
Kyle, Katherine E
Horowitz, Julie E
Yang-Iott, Katherine
Bassing, Craig H
Taniuchi, Ichiro
Krangel, Michael S
Oltz, Eugene M
description Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.
doi_str_mv 10.1084/jem.20141479
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652383748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERZctN87IRw6k-DvOBQlVfEkrcWnPluNMsq4SO7UdJPrX46rtCk6c5jC_efNmHkJvKbmkRIuPt7BcMkIFFW33Au2oFKTpJNcv0Y4QxhpKSHuOXud8SyolpHqFzpmUlImW7ND9wQewEzR5BedH77CLy2pd8THgOOJrl3qc4G7zCTK22B1TXGzxAfc2JQ8Jl4jXFAu4gssR8LiF07DFcwxTk2yYABeo7eTDhGGGBUK5QGejnTO8eap7dPP1y_XV9-bw89uPq8-HxgnNS9Ox6pTR3mk3DkQyYGyQFlSnGBBFe6rlIDXQFnhrla1fGJQTqu2IY7LlPd-jT4-669YvMLi6OtnZrMkvNv020Xrzbyf4o5niLyNYRyWTVeD9k0CKdxvkYhafHcyzDRC3bKgmWnFeTf4fVZJxzdt62R59eERdijknGE-OKDEPyZqarHlOtuLv_r7iBD9Hyf8ANaWgpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652383748</pqid></control><display><type>article</type><title>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Majumder, Kinjal ; Koues, Olivia I ; Chan, Elizabeth A W ; Kyle, Katherine E ; Horowitz, Julie E ; Yang-Iott, Katherine ; Bassing, Craig H ; Taniuchi, Ichiro ; Krangel, Michael S ; Oltz, Eugene M</creator><creatorcontrib>Majumder, Kinjal ; Koues, Olivia I ; Chan, Elizabeth A W ; Kyle, Katherine E ; Horowitz, Julie E ; Yang-Iott, Katherine ; Bassing, Craig H ; Taniuchi, Ichiro ; Krangel, Michael S ; Oltz, Eugene M</creatorcontrib><description>Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.</description><identifier>ISSN: 0022-1007</identifier><identifier>EISSN: 1540-9538</identifier><identifier>DOI: 10.1084/jem.20141479</identifier><identifier>PMID: 25512470</identifier><language>eng</language><publisher>United States: The Rockefeller University Press</publisher><subject>Animals ; CCCTC-Binding Factor ; Cell Lineage - genetics ; Cells, Cultured ; Chromatin - genetics ; Chromatin - metabolism ; Enhancer Elements, Genetic - genetics ; Gene Expression Regulation ; Histones - metabolism ; In Situ Hybridization, Fluorescence - methods ; Methylation ; Mice, Inbred C57BL ; Mice, Knockout ; Precursor Cells, B-Lymphoid - cytology ; Precursor Cells, B-Lymphoid - metabolism ; Promoter Regions, Genetic - genetics ; Protein Binding ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Receptors, Antigen, T-Cell, alpha-beta - metabolism ; Repressor Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Thymocytes - cytology ; Thymocytes - metabolism ; V(D)J Recombination - genetics ; VDJ Recombinases - metabolism</subject><ispartof>The Journal of experimental medicine, 2015-01, Vol.212 (1), p.107-120</ispartof><rights>2015 Majumder et al.</rights><rights>2015 Majumder et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</citedby><cites>FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25512470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majumder, Kinjal</creatorcontrib><creatorcontrib>Koues, Olivia I</creatorcontrib><creatorcontrib>Chan, Elizabeth A W</creatorcontrib><creatorcontrib>Kyle, Katherine E</creatorcontrib><creatorcontrib>Horowitz, Julie E</creatorcontrib><creatorcontrib>Yang-Iott, Katherine</creatorcontrib><creatorcontrib>Bassing, Craig H</creatorcontrib><creatorcontrib>Taniuchi, Ichiro</creatorcontrib><creatorcontrib>Krangel, Michael S</creatorcontrib><creatorcontrib>Oltz, Eugene M</creatorcontrib><title>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</title><title>The Journal of experimental medicine</title><addtitle>J Exp Med</addtitle><description>Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.</description><subject>Animals</subject><subject>CCCTC-Binding Factor</subject><subject>Cell Lineage - genetics</subject><subject>Cells, Cultured</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Gene Expression Regulation</subject><subject>Histones - metabolism</subject><subject>In Situ Hybridization, Fluorescence - methods</subject><subject>Methylation</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Precursor Cells, B-Lymphoid - cytology</subject><subject>Precursor Cells, B-Lymphoid - metabolism</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - metabolism</subject><subject>Repressor Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Thymocytes - cytology</subject><subject>Thymocytes - metabolism</subject><subject>V(D)J Recombination - genetics</subject><subject>VDJ Recombinases - metabolism</subject><issn>0022-1007</issn><issn>1540-9538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS1ERZctN87IRw6k-DvOBQlVfEkrcWnPluNMsq4SO7UdJPrX46rtCk6c5jC_efNmHkJvKbmkRIuPt7BcMkIFFW33Au2oFKTpJNcv0Y4QxhpKSHuOXud8SyolpHqFzpmUlImW7ND9wQewEzR5BedH77CLy2pd8THgOOJrl3qc4G7zCTK22B1TXGzxAfc2JQ8Jl4jXFAu4gssR8LiF07DFcwxTk2yYABeo7eTDhGGGBUK5QGejnTO8eap7dPP1y_XV9-bw89uPq8-HxgnNS9Ox6pTR3mk3DkQyYGyQFlSnGBBFe6rlIDXQFnhrla1fGJQTqu2IY7LlPd-jT4-669YvMLi6OtnZrMkvNv020Xrzbyf4o5niLyNYRyWTVeD9k0CKdxvkYhafHcyzDRC3bKgmWnFeTf4fVZJxzdt62R59eERdijknGE-OKDEPyZqarHlOtuLv_r7iBD9Hyf8ANaWgpQ</recordid><startdate>20150112</startdate><enddate>20150112</enddate><creator>Majumder, Kinjal</creator><creator>Koues, Olivia I</creator><creator>Chan, Elizabeth A W</creator><creator>Kyle, Katherine E</creator><creator>Horowitz, Julie E</creator><creator>Yang-Iott, Katherine</creator><creator>Bassing, Craig H</creator><creator>Taniuchi, Ichiro</creator><creator>Krangel, Michael S</creator><creator>Oltz, Eugene M</creator><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>7TM</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20150112</creationdate><title>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</title><author>Majumder, Kinjal ; Koues, Olivia I ; Chan, Elizabeth A W ; Kyle, Katherine E ; Horowitz, Julie E ; Yang-Iott, Katherine ; Bassing, Craig H ; Taniuchi, Ichiro ; Krangel, Michael S ; Oltz, Eugene M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>CCCTC-Binding Factor</topic><topic>Cell Lineage - genetics</topic><topic>Cells, Cultured</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Gene Expression Regulation</topic><topic>Histones - metabolism</topic><topic>In Situ Hybridization, Fluorescence - methods</topic><topic>Methylation</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Precursor Cells, B-Lymphoid - cytology</topic><topic>Precursor Cells, B-Lymphoid - metabolism</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - metabolism</topic><topic>Repressor Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Thymocytes - cytology</topic><topic>Thymocytes - metabolism</topic><topic>V(D)J Recombination - genetics</topic><topic>VDJ Recombinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumder, Kinjal</creatorcontrib><creatorcontrib>Koues, Olivia I</creatorcontrib><creatorcontrib>Chan, Elizabeth A W</creatorcontrib><creatorcontrib>Kyle, Katherine E</creatorcontrib><creatorcontrib>Horowitz, Julie E</creatorcontrib><creatorcontrib>Yang-Iott, Katherine</creatorcontrib><creatorcontrib>Bassing, Craig H</creatorcontrib><creatorcontrib>Taniuchi, Ichiro</creatorcontrib><creatorcontrib>Krangel, Michael S</creatorcontrib><creatorcontrib>Oltz, Eugene M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of experimental medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumder, Kinjal</au><au>Koues, Olivia I</au><au>Chan, Elizabeth A W</au><au>Kyle, Katherine E</au><au>Horowitz, Julie E</au><au>Yang-Iott, Katherine</au><au>Bassing, Craig H</au><au>Taniuchi, Ichiro</au><au>Krangel, Michael S</au><au>Oltz, Eugene M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</atitle><jtitle>The Journal of experimental medicine</jtitle><addtitle>J Exp Med</addtitle><date>2015-01-12</date><risdate>2015</risdate><volume>212</volume><issue>1</issue><spage>107</spage><epage>120</epage><pages>107-120</pages><issn>0022-1007</issn><eissn>1540-9538</eissn><abstract>Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.</abstract><cop>United States</cop><pub>The Rockefeller University Press</pub><pmid>25512470</pmid><doi>10.1084/jem.20141479</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1007
ispartof The Journal of experimental medicine, 2015-01, Vol.212 (1), p.107-120
issn 0022-1007
1540-9538
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291525
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
CCCTC-Binding Factor
Cell Lineage - genetics
Cells, Cultured
Chromatin - genetics
Chromatin - metabolism
Enhancer Elements, Genetic - genetics
Gene Expression Regulation
Histones - metabolism
In Situ Hybridization, Fluorescence - methods
Methylation
Mice, Inbred C57BL
Mice, Knockout
Precursor Cells, B-Lymphoid - cytology
Precursor Cells, B-Lymphoid - metabolism
Promoter Regions, Genetic - genetics
Protein Binding
Receptors, Antigen, T-Cell, alpha-beta - genetics
Receptors, Antigen, T-Cell, alpha-beta - metabolism
Repressor Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
Thymocytes - cytology
Thymocytes - metabolism
V(D)J Recombination - genetics
VDJ Recombinases - metabolism
title Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lineage-specific%20compaction%20of%20Tcrb%20requires%20a%20chromatin%20barrier%20to%20protect%20the%20function%20of%20a%20long-range%20tethering%20element&rft.jtitle=The%20Journal%20of%20experimental%20medicine&rft.au=Majumder,%20Kinjal&rft.date=2015-01-12&rft.volume=212&rft.issue=1&rft.spage=107&rft.epage=120&rft.pages=107-120&rft.issn=0022-1007&rft.eissn=1540-9538&rft_id=info:doi/10.1084/jem.20141479&rft_dat=%3Cproquest_pubme%3E1652383748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652383748&rft_id=info:pmid/25512470&rfr_iscdi=true