Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element
Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which c...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2015-01, Vol.212 (1), p.107-120 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | The Journal of experimental medicine |
container_volume | 212 |
creator | Majumder, Kinjal Koues, Olivia I Chan, Elizabeth A W Kyle, Katherine E Horowitz, Julie E Yang-Iott, Katherine Bassing, Craig H Taniuchi, Ichiro Krangel, Michael S Oltz, Eugene M |
description | Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers. |
doi_str_mv | 10.1084/jem.20141479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652383748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERZctN87IRw6k-DvOBQlVfEkrcWnPluNMsq4SO7UdJPrX46rtCk6c5jC_efNmHkJvKbmkRIuPt7BcMkIFFW33Au2oFKTpJNcv0Y4QxhpKSHuOXud8SyolpHqFzpmUlImW7ND9wQewEzR5BedH77CLy2pd8THgOOJrl3qc4G7zCTK22B1TXGzxAfc2JQ8Jl4jXFAu4gssR8LiF07DFcwxTk2yYABeo7eTDhGGGBUK5QGejnTO8eap7dPP1y_XV9-bw89uPq8-HxgnNS9Ox6pTR3mk3DkQyYGyQFlSnGBBFe6rlIDXQFnhrla1fGJQTqu2IY7LlPd-jT4-669YvMLi6OtnZrMkvNv020Xrzbyf4o5niLyNYRyWTVeD9k0CKdxvkYhafHcyzDRC3bKgmWnFeTf4fVZJxzdt62R59eERdijknGE-OKDEPyZqarHlOtuLv_r7iBD9Hyf8ANaWgpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652383748</pqid></control><display><type>article</type><title>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Majumder, Kinjal ; Koues, Olivia I ; Chan, Elizabeth A W ; Kyle, Katherine E ; Horowitz, Julie E ; Yang-Iott, Katherine ; Bassing, Craig H ; Taniuchi, Ichiro ; Krangel, Michael S ; Oltz, Eugene M</creator><creatorcontrib>Majumder, Kinjal ; Koues, Olivia I ; Chan, Elizabeth A W ; Kyle, Katherine E ; Horowitz, Julie E ; Yang-Iott, Katherine ; Bassing, Craig H ; Taniuchi, Ichiro ; Krangel, Michael S ; Oltz, Eugene M</creatorcontrib><description>Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.</description><identifier>ISSN: 0022-1007</identifier><identifier>EISSN: 1540-9538</identifier><identifier>DOI: 10.1084/jem.20141479</identifier><identifier>PMID: 25512470</identifier><language>eng</language><publisher>United States: The Rockefeller University Press</publisher><subject>Animals ; CCCTC-Binding Factor ; Cell Lineage - genetics ; Cells, Cultured ; Chromatin - genetics ; Chromatin - metabolism ; Enhancer Elements, Genetic - genetics ; Gene Expression Regulation ; Histones - metabolism ; In Situ Hybridization, Fluorescence - methods ; Methylation ; Mice, Inbred C57BL ; Mice, Knockout ; Precursor Cells, B-Lymphoid - cytology ; Precursor Cells, B-Lymphoid - metabolism ; Promoter Regions, Genetic - genetics ; Protein Binding ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Receptors, Antigen, T-Cell, alpha-beta - metabolism ; Repressor Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Thymocytes - cytology ; Thymocytes - metabolism ; V(D)J Recombination - genetics ; VDJ Recombinases - metabolism</subject><ispartof>The Journal of experimental medicine, 2015-01, Vol.212 (1), p.107-120</ispartof><rights>2015 Majumder et al.</rights><rights>2015 Majumder et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</citedby><cites>FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25512470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majumder, Kinjal</creatorcontrib><creatorcontrib>Koues, Olivia I</creatorcontrib><creatorcontrib>Chan, Elizabeth A W</creatorcontrib><creatorcontrib>Kyle, Katherine E</creatorcontrib><creatorcontrib>Horowitz, Julie E</creatorcontrib><creatorcontrib>Yang-Iott, Katherine</creatorcontrib><creatorcontrib>Bassing, Craig H</creatorcontrib><creatorcontrib>Taniuchi, Ichiro</creatorcontrib><creatorcontrib>Krangel, Michael S</creatorcontrib><creatorcontrib>Oltz, Eugene M</creatorcontrib><title>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</title><title>The Journal of experimental medicine</title><addtitle>J Exp Med</addtitle><description>Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.</description><subject>Animals</subject><subject>CCCTC-Binding Factor</subject><subject>Cell Lineage - genetics</subject><subject>Cells, Cultured</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Gene Expression Regulation</subject><subject>Histones - metabolism</subject><subject>In Situ Hybridization, Fluorescence - methods</subject><subject>Methylation</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Precursor Cells, B-Lymphoid - cytology</subject><subject>Precursor Cells, B-Lymphoid - metabolism</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - metabolism</subject><subject>Repressor Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Thymocytes - cytology</subject><subject>Thymocytes - metabolism</subject><subject>V(D)J Recombination - genetics</subject><subject>VDJ Recombinases - metabolism</subject><issn>0022-1007</issn><issn>1540-9538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS1ERZctN87IRw6k-DvOBQlVfEkrcWnPluNMsq4SO7UdJPrX46rtCk6c5jC_efNmHkJvKbmkRIuPt7BcMkIFFW33Au2oFKTpJNcv0Y4QxhpKSHuOXud8SyolpHqFzpmUlImW7ND9wQewEzR5BedH77CLy2pd8THgOOJrl3qc4G7zCTK22B1TXGzxAfc2JQ8Jl4jXFAu4gssR8LiF07DFcwxTk2yYABeo7eTDhGGGBUK5QGejnTO8eap7dPP1y_XV9-bw89uPq8-HxgnNS9Ox6pTR3mk3DkQyYGyQFlSnGBBFe6rlIDXQFnhrla1fGJQTqu2IY7LlPd-jT4-669YvMLi6OtnZrMkvNv020Xrzbyf4o5niLyNYRyWTVeD9k0CKdxvkYhafHcyzDRC3bKgmWnFeTf4fVZJxzdt62R59eERdijknGE-OKDEPyZqarHlOtuLv_r7iBD9Hyf8ANaWgpQ</recordid><startdate>20150112</startdate><enddate>20150112</enddate><creator>Majumder, Kinjal</creator><creator>Koues, Olivia I</creator><creator>Chan, Elizabeth A W</creator><creator>Kyle, Katherine E</creator><creator>Horowitz, Julie E</creator><creator>Yang-Iott, Katherine</creator><creator>Bassing, Craig H</creator><creator>Taniuchi, Ichiro</creator><creator>Krangel, Michael S</creator><creator>Oltz, Eugene M</creator><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>7TM</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20150112</creationdate><title>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</title><author>Majumder, Kinjal ; Koues, Olivia I ; Chan, Elizabeth A W ; Kyle, Katherine E ; Horowitz, Julie E ; Yang-Iott, Katherine ; Bassing, Craig H ; Taniuchi, Ichiro ; Krangel, Michael S ; Oltz, Eugene M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-9224721bc8cfd052e22d5ae6962e061b185d58e17e37a6a479d6c46790c2573b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>CCCTC-Binding Factor</topic><topic>Cell Lineage - genetics</topic><topic>Cells, Cultured</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Gene Expression Regulation</topic><topic>Histones - metabolism</topic><topic>In Situ Hybridization, Fluorescence - methods</topic><topic>Methylation</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Precursor Cells, B-Lymphoid - cytology</topic><topic>Precursor Cells, B-Lymphoid - metabolism</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - metabolism</topic><topic>Repressor Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Thymocytes - cytology</topic><topic>Thymocytes - metabolism</topic><topic>V(D)J Recombination - genetics</topic><topic>VDJ Recombinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumder, Kinjal</creatorcontrib><creatorcontrib>Koues, Olivia I</creatorcontrib><creatorcontrib>Chan, Elizabeth A W</creatorcontrib><creatorcontrib>Kyle, Katherine E</creatorcontrib><creatorcontrib>Horowitz, Julie E</creatorcontrib><creatorcontrib>Yang-Iott, Katherine</creatorcontrib><creatorcontrib>Bassing, Craig H</creatorcontrib><creatorcontrib>Taniuchi, Ichiro</creatorcontrib><creatorcontrib>Krangel, Michael S</creatorcontrib><creatorcontrib>Oltz, Eugene M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of experimental medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumder, Kinjal</au><au>Koues, Olivia I</au><au>Chan, Elizabeth A W</au><au>Kyle, Katherine E</au><au>Horowitz, Julie E</au><au>Yang-Iott, Katherine</au><au>Bassing, Craig H</au><au>Taniuchi, Ichiro</au><au>Krangel, Michael S</au><au>Oltz, Eugene M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element</atitle><jtitle>The Journal of experimental medicine</jtitle><addtitle>J Exp Med</addtitle><date>2015-01-12</date><risdate>2015</risdate><volume>212</volume><issue>1</issue><spage>107</spage><epage>120</epage><pages>107-120</pages><issn>0022-1007</issn><eissn>1540-9538</eissn><abstract>Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.</abstract><cop>United States</cop><pub>The Rockefeller University Press</pub><pmid>25512470</pmid><doi>10.1084/jem.20141479</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1007 |
ispartof | The Journal of experimental medicine, 2015-01, Vol.212 (1), p.107-120 |
issn | 0022-1007 1540-9538 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4291525 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals CCCTC-Binding Factor Cell Lineage - genetics Cells, Cultured Chromatin - genetics Chromatin - metabolism Enhancer Elements, Genetic - genetics Gene Expression Regulation Histones - metabolism In Situ Hybridization, Fluorescence - methods Methylation Mice, Inbred C57BL Mice, Knockout Precursor Cells, B-Lymphoid - cytology Precursor Cells, B-Lymphoid - metabolism Promoter Regions, Genetic - genetics Protein Binding Receptors, Antigen, T-Cell, alpha-beta - genetics Receptors, Antigen, T-Cell, alpha-beta - metabolism Repressor Proteins - metabolism Reverse Transcriptase Polymerase Chain Reaction Thymocytes - cytology Thymocytes - metabolism V(D)J Recombination - genetics VDJ Recombinases - metabolism |
title | Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lineage-specific%20compaction%20of%20Tcrb%20requires%20a%20chromatin%20barrier%20to%20protect%20the%20function%20of%20a%20long-range%20tethering%20element&rft.jtitle=The%20Journal%20of%20experimental%20medicine&rft.au=Majumder,%20Kinjal&rft.date=2015-01-12&rft.volume=212&rft.issue=1&rft.spage=107&rft.epage=120&rft.pages=107-120&rft.issn=0022-1007&rft.eissn=1540-9538&rft_id=info:doi/10.1084/jem.20141479&rft_dat=%3Cproquest_pubme%3E1652383748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652383748&rft_id=info:pmid/25512470&rfr_iscdi=true |