Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery

Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical engineering online 2014-12, Vol.13 (1), p.166-166, Article 166
Hauptverfasser: Awara, Kousuke, Kitai, Ryuhei, Isozaki, Makoto, Neishi, Hiroyuki, Kikuta, Kenichiro, Fushisato, Naoki, Kawamoto, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 166
container_title Biomedical engineering online
container_volume 13
creator Awara, Kousuke
Kitai, Ryuhei
Isozaki, Makoto
Neishi, Hiroyuki
Kikuta, Kenichiro
Fushisato, Naoki
Kawamoto, Akira
description Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.
doi_str_mv 10.1186/1475-925X-13-166
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4290091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539637885</galeid><sourcerecordid>A539637885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-d505efbfea9d0cfa9ce641d2c95a5dc80384d5733728b5ac790fbfe51bd863583</originalsourceid><addsrcrecordid>eNqNkstrFTEUxgdR7EP3rmTAjV1MzWOSmWyEUnwUCoJWcBcyyZm5KZnkmkyq_e_N0PbSKy4ki4ST3_fl5JxTVa8wOsW45-9w27FGEPajwbTBnD-pDnehp4_OB9VRStcIEYS4eF4dEMYwFoQfVuFqY30zWjfX4EAvMYDXsN0oF6aothurH-IGUp2T9VM9Z7fY5pdyDkytVRyCr73yYclDYVSEGsaxaOwN1GOItYccQ8pxgnj7ono2Kpfg5f1-XH3_-OHq_HNz-eXTxfnZZaM71C2NYYjBOIyghEF6VEIDb7EhWjDFjO4R7VvDOko70g9M6U6glWZ4MD2nrKfH1fs7320eZjAa_BKVk9toZxVvZVBW7t94u5FTuJEtEQgJXAze3hvE8DNDWuRskwbnlIeQk8S87RDhVLD_QTHCHe1FQd_8hV6HHH2pxEpRwgUpn9pRk3IgrR9DSVGvpvKMUcFp1_frs6f_oMoyMFsdPJSuwr7gZE9QmAV-L5PKKcmLb1_3WXTH6tK6FGHclQ4juc6eXIdLrsMlMS3J8yJ5_bjkO8HDsNE_sSXVwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643269273</pqid></control><display><type>article</type><title>Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Awara, Kousuke ; Kitai, Ryuhei ; Isozaki, Makoto ; Neishi, Hiroyuki ; Kikuta, Kenichiro ; Fushisato, Naoki ; Kawamoto, Akira</creator><creatorcontrib>Awara, Kousuke ; Kitai, Ryuhei ; Isozaki, Makoto ; Neishi, Hiroyuki ; Kikuta, Kenichiro ; Fushisato, Naoki ; Kawamoto, Akira</creatorcontrib><description>Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.</description><identifier>ISSN: 1475-925X</identifier><identifier>EISSN: 1475-925X</identifier><identifier>DOI: 10.1186/1475-925X-13-166</identifier><identifier>PMID: 25511926</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Carbon ; Carbon - chemistry ; Cost-Benefit Analysis ; CT imaging ; Electric properties ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Electrophysiology ; Equipment Design ; Evoked Potentials ; Experiments ; Glass substrates ; Humans ; Infectious diseases ; Magnetic Resonance Imaging - methods ; Manufacturing ; Materials Testing ; Medical imaging ; Medical research ; Metals - chemistry ; Methods ; Nanotechnology ; Nanotechnology - methods ; Nanotubes ; Nanotubes, Carbon - chemistry ; Nervous system ; Neurosurgery ; Neurosurgery - methods ; Silver ; Silver - chemistry ; Skin ; Skin - pathology ; Studies ; Surgery ; Tomography, X-Ray Computed - methods ; X-Rays</subject><ispartof>Biomedical engineering online, 2014-12, Vol.13 (1), p.166-166, Article 166</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Awara et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Awara et al.; licensee BioMed Central. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-d505efbfea9d0cfa9ce641d2c95a5dc80384d5733728b5ac790fbfe51bd863583</citedby><cites>FETCH-LOGICAL-c707t-d505efbfea9d0cfa9ce641d2c95a5dc80384d5733728b5ac790fbfe51bd863583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290091/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290091/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25511926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Awara, Kousuke</creatorcontrib><creatorcontrib>Kitai, Ryuhei</creatorcontrib><creatorcontrib>Isozaki, Makoto</creatorcontrib><creatorcontrib>Neishi, Hiroyuki</creatorcontrib><creatorcontrib>Kikuta, Kenichiro</creatorcontrib><creatorcontrib>Fushisato, Naoki</creatorcontrib><creatorcontrib>Kawamoto, Akira</creatorcontrib><title>Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery</title><title>Biomedical engineering online</title><addtitle>Biomed Eng Online</addtitle><description>Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.</description><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Cost-Benefit Analysis</subject><subject>CT imaging</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electrophysiology</subject><subject>Equipment Design</subject><subject>Evoked Potentials</subject><subject>Experiments</subject><subject>Glass substrates</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Manufacturing</subject><subject>Materials Testing</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Metals - chemistry</subject><subject>Methods</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nervous system</subject><subject>Neurosurgery</subject><subject>Neurosurgery - methods</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Skin</subject><subject>Skin - pathology</subject><subject>Studies</subject><subject>Surgery</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X-Rays</subject><issn>1475-925X</issn><issn>1475-925X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkstrFTEUxgdR7EP3rmTAjV1MzWOSmWyEUnwUCoJWcBcyyZm5KZnkmkyq_e_N0PbSKy4ki4ST3_fl5JxTVa8wOsW45-9w27FGEPajwbTBnD-pDnehp4_OB9VRStcIEYS4eF4dEMYwFoQfVuFqY30zWjfX4EAvMYDXsN0oF6aothurH-IGUp2T9VM9Z7fY5pdyDkytVRyCr73yYclDYVSEGsaxaOwN1GOItYccQ8pxgnj7ono2Kpfg5f1-XH3_-OHq_HNz-eXTxfnZZaM71C2NYYjBOIyghEF6VEIDb7EhWjDFjO4R7VvDOko70g9M6U6glWZ4MD2nrKfH1fs7320eZjAa_BKVk9toZxVvZVBW7t94u5FTuJEtEQgJXAze3hvE8DNDWuRskwbnlIeQk8S87RDhVLD_QTHCHe1FQd_8hV6HHH2pxEpRwgUpn9pRk3IgrR9DSVGvpvKMUcFp1_frs6f_oMoyMFsdPJSuwr7gZE9QmAV-L5PKKcmLb1_3WXTH6tK6FGHclQ4juc6eXIdLrsMlMS3J8yJ5_bjkO8HDsNE_sSXVwA</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Awara, Kousuke</creator><creator>Kitai, Ryuhei</creator><creator>Isozaki, Makoto</creator><creator>Neishi, Hiroyuki</creator><creator>Kikuta, Kenichiro</creator><creator>Fushisato, Naoki</creator><creator>Kawamoto, Akira</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141215</creationdate><title>Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery</title><author>Awara, Kousuke ; Kitai, Ryuhei ; Isozaki, Makoto ; Neishi, Hiroyuki ; Kikuta, Kenichiro ; Fushisato, Naoki ; Kawamoto, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-d505efbfea9d0cfa9ce641d2c95a5dc80384d5733728b5ac790fbfe51bd863583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Cost-Benefit Analysis</topic><topic>CT imaging</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electrophysiology</topic><topic>Equipment Design</topic><topic>Evoked Potentials</topic><topic>Experiments</topic><topic>Glass substrates</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Manufacturing</topic><topic>Materials Testing</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Metals - chemistry</topic><topic>Methods</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nervous system</topic><topic>Neurosurgery</topic><topic>Neurosurgery - methods</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Skin</topic><topic>Skin - pathology</topic><topic>Studies</topic><topic>Surgery</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awara, Kousuke</creatorcontrib><creatorcontrib>Kitai, Ryuhei</creatorcontrib><creatorcontrib>Isozaki, Makoto</creatorcontrib><creatorcontrib>Neishi, Hiroyuki</creatorcontrib><creatorcontrib>Kikuta, Kenichiro</creatorcontrib><creatorcontrib>Fushisato, Naoki</creatorcontrib><creatorcontrib>Kawamoto, Akira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical engineering online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awara, Kousuke</au><au>Kitai, Ryuhei</au><au>Isozaki, Makoto</au><au>Neishi, Hiroyuki</au><au>Kikuta, Kenichiro</au><au>Fushisato, Naoki</au><au>Kawamoto, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery</atitle><jtitle>Biomedical engineering online</jtitle><addtitle>Biomed Eng Online</addtitle><date>2014-12-15</date><risdate>2014</risdate><volume>13</volume><issue>1</issue><spage>166</spage><epage>166</epage><pages>166-166</pages><artnum>166</artnum><issn>1475-925X</issn><eissn>1475-925X</eissn><abstract>Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25511926</pmid><doi>10.1186/1475-925X-13-166</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-925X
ispartof Biomedical engineering online, 2014-12, Vol.13 (1), p.166-166, Article 166
issn 1475-925X
1475-925X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4290091
source MEDLINE; Springer Nature - Complete Springer Journals; PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Carbon
Carbon - chemistry
Cost-Benefit Analysis
CT imaging
Electric properties
Electrodes
Electroencephalography
Electroencephalography - methods
Electrophysiology
Equipment Design
Evoked Potentials
Experiments
Glass substrates
Humans
Infectious diseases
Magnetic Resonance Imaging - methods
Manufacturing
Materials Testing
Medical imaging
Medical research
Metals - chemistry
Methods
Nanotechnology
Nanotechnology - methods
Nanotubes
Nanotubes, Carbon - chemistry
Nervous system
Neurosurgery
Neurosurgery - methods
Silver
Silver - chemistry
Skin
Skin - pathology
Studies
Surgery
Tomography, X-Ray Computed - methods
X-Rays
title Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-film%20electroencephalographic%20electrodes%20using%20multi-walled%20carbon%20nanotubes%20are%20effective%20for%20neurosurgery&rft.jtitle=Biomedical%20engineering%20online&rft.au=Awara,%20Kousuke&rft.date=2014-12-15&rft.volume=13&rft.issue=1&rft.spage=166&rft.epage=166&rft.pages=166-166&rft.artnum=166&rft.issn=1475-925X&rft.eissn=1475-925X&rft_id=info:doi/10.1186/1475-925X-13-166&rft_dat=%3Cgale_pubme%3EA539637885%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1643269273&rft_id=info:pmid/25511926&rft_galeid=A539637885&rfr_iscdi=true