High-Resolution Characterization of the Pancreatic Adenocarcinoma Genome

The pancreatic adenocarcinoma genome harbors multiple amplifications and deletions, pointing to the existence of numerous oncogenes and tumor suppressor genes driving the genesis and progression of this lethal cancer. Here, array comparative genomic hybridization on a cDNA microarray platform and in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-06, Vol.101 (24), p.9067-9072
Hauptverfasser: Aguirre, Andrew J., Brennan, Cameron, Bailey, Gerald, Sinha, Raktim, Feng, Bin, Leo, Christopher, Zhang, Yunyu, Zhang, Jean, Gans, Joseph D., Bardeesy, Nabeel, Cauwels, Craig, Cordon-Cardo, Carlos, Redston, Mark S., DePinho, Ronald A., Chin, Lynda, Cantley, Lewis C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9072
container_issue 24
container_start_page 9067
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Aguirre, Andrew J.
Brennan, Cameron
Bailey, Gerald
Sinha, Raktim
Feng, Bin
Leo, Christopher
Zhang, Yunyu
Zhang, Jean
Gans, Joseph D.
Bardeesy, Nabeel
Cauwels, Craig
Cordon-Cardo, Carlos
Redston, Mark S.
DePinho, Ronald A.
Chin, Lynda
Cantley, Lewis C.
description The pancreatic adenocarcinoma genome harbors multiple amplifications and deletions, pointing to the existence of numerous oncogenes and tumor suppressor genes driving the genesis and progression of this lethal cancer. Here, array comparative genomic hybridization on a cDNA microarray platform and informatics tools have been used to define the copy number alterations in a panel of 24 pancreatic adenocarcinoma cell lines and 13 primary tumor specimens. This high-resolution genomic analysis has identified all known regional gains and losses as well as many previously uncharacterized highly recurrent copy number alterations. A systematic prioritization scheme has selected 64 focal minimal common regions (MCRs) of recurrent copy number change. These MCRs possess a median size of 2.7 megabases (Mb), with 21 (33%) MCRs spanning 1 Mb or less (median of 0.33 Mb) and possessing an average of 15 annotated genes. Furthermore, complementary expression profile analysis of a significant fraction of the genes residing within these 64 prioritized MCRs has enabled the identification of a subset of candidates with statistically significant association between gene dosage and mRNA expression. Thus, the integration of DNA and RNA profiles provides a highly productive entry point for the discovery of genes involved in the pathogenesis of pancreatic adenocarcinoma.
doi_str_mv 10.1073/pnas.0402932101
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_428474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372391</jstor_id><sourcerecordid>3372391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-f2a6eb60da3e743bda2021ef5c339b784154fd971d00a07dabe1080f9e8486023</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERZeFMxcEEQfUS9rxR-L40EO1Kl2kSiAEZ8txJt2sknixHQT89XXYVRc4wMnyzO89e-YR8oLCOQXJL3ajCecggCnOKNBHZEFB0bwUCh6TBQCTeSWYOCVPQ9gCgCoqeEJOaUGVYowtyHrd3W3yTxhcP8XOjdlqY7yxEX330_wquDaLG8w-mtF6TCWbXTU4Omu87UY3mOwm3QZ8Rk5a0wd8fjiX5Mu768-rdX774eb96uo2t4WCmLfMlFiX0BiOUvC6MQwYxbawnKtaVoIWom2UpA2AAdmYGilU0CqsRFUC40tyuffdTfWAjcUxetPrne8G439oZzr9Z2fsNvrOfdOCVSK9uCRvD3rvvk4Yoh66YLHvzYhuCloy4KWkxX9BWqV1cqUS-OYvcOsmP6YlaAZ0TkbObhd7yHoXgsf24ccU9BylnqPUxyiT4tXvgx75Q3YJODsAs_JoRzUTWkEpdTv1fcTvMaGv_40m4uWe2Ibo_APCuWRcUX4Pwum78Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201293275</pqid></control><display><type>article</type><title>High-Resolution Characterization of the Pancreatic Adenocarcinoma Genome</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Aguirre, Andrew J. ; Brennan, Cameron ; Bailey, Gerald ; Sinha, Raktim ; Feng, Bin ; Leo, Christopher ; Zhang, Yunyu ; Zhang, Jean ; Gans, Joseph D. ; Bardeesy, Nabeel ; Cauwels, Craig ; Cordon-Cardo, Carlos ; Redston, Mark S. ; DePinho, Ronald A. ; Chin, Lynda ; Cantley, Lewis C.</creator><creatorcontrib>Aguirre, Andrew J. ; Brennan, Cameron ; Bailey, Gerald ; Sinha, Raktim ; Feng, Bin ; Leo, Christopher ; Zhang, Yunyu ; Zhang, Jean ; Gans, Joseph D. ; Bardeesy, Nabeel ; Cauwels, Craig ; Cordon-Cardo, Carlos ; Redston, Mark S. ; DePinho, Ronald A. ; Chin, Lynda ; Cantley, Lewis C.</creatorcontrib><description>The pancreatic adenocarcinoma genome harbors multiple amplifications and deletions, pointing to the existence of numerous oncogenes and tumor suppressor genes driving the genesis and progression of this lethal cancer. Here, array comparative genomic hybridization on a cDNA microarray platform and informatics tools have been used to define the copy number alterations in a panel of 24 pancreatic adenocarcinoma cell lines and 13 primary tumor specimens. This high-resolution genomic analysis has identified all known regional gains and losses as well as many previously uncharacterized highly recurrent copy number alterations. A systematic prioritization scheme has selected 64 focal minimal common regions (MCRs) of recurrent copy number change. These MCRs possess a median size of 2.7 megabases (Mb), with 21 (33%) MCRs spanning 1 Mb or less (median of 0.33 Mb) and possessing an average of 15 annotated genes. Furthermore, complementary expression profile analysis of a significant fraction of the genes residing within these 64 prioritized MCRs has enabled the identification of a subset of candidates with statistically significant association between gene dosage and mRNA expression. Thus, the integration of DNA and RNA profiles provides a highly productive entry point for the discovery of genes involved in the pathogenesis of pancreatic adenocarcinoma.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0402932101</identifier><identifier>PMID: 15199222</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenocarcinoma ; Adenocarcinoma - genetics ; Animals ; Biological Sciences ; Cancer ; Cell Line, Tumor ; Cell lines ; Chromosomes ; Chromosomes - genetics ; Chromosomes, Human, Pair 17 ; Comparative genomic hybridization ; Computational Biology - methods ; Cyclin-Dependent Kinase Inhibitor p16 - genetics ; Gene Deletion ; Gene Dosage ; Gene Expression ; Genes ; Genetic loci ; Genome ; Genomes ; Genomics ; Homozygote ; Humans ; Medical research ; Nucleic Acid Hybridization - methods ; Oligonucleotide Array Sequence Analysis ; Pancreas ; Pancreatic Neoplasms - genetics ; Tumor cell line ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (24), p.9067-9072</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 15, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-f2a6eb60da3e743bda2021ef5c339b784154fd971d00a07dabe1080f9e8486023</citedby><cites>FETCH-LOGICAL-c590t-f2a6eb60da3e743bda2021ef5c339b784154fd971d00a07dabe1080f9e8486023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372391$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372391$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15199222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguirre, Andrew J.</creatorcontrib><creatorcontrib>Brennan, Cameron</creatorcontrib><creatorcontrib>Bailey, Gerald</creatorcontrib><creatorcontrib>Sinha, Raktim</creatorcontrib><creatorcontrib>Feng, Bin</creatorcontrib><creatorcontrib>Leo, Christopher</creatorcontrib><creatorcontrib>Zhang, Yunyu</creatorcontrib><creatorcontrib>Zhang, Jean</creatorcontrib><creatorcontrib>Gans, Joseph D.</creatorcontrib><creatorcontrib>Bardeesy, Nabeel</creatorcontrib><creatorcontrib>Cauwels, Craig</creatorcontrib><creatorcontrib>Cordon-Cardo, Carlos</creatorcontrib><creatorcontrib>Redston, Mark S.</creatorcontrib><creatorcontrib>DePinho, Ronald A.</creatorcontrib><creatorcontrib>Chin, Lynda</creatorcontrib><creatorcontrib>Cantley, Lewis C.</creatorcontrib><title>High-Resolution Characterization of the Pancreatic Adenocarcinoma Genome</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The pancreatic adenocarcinoma genome harbors multiple amplifications and deletions, pointing to the existence of numerous oncogenes and tumor suppressor genes driving the genesis and progression of this lethal cancer. Here, array comparative genomic hybridization on a cDNA microarray platform and informatics tools have been used to define the copy number alterations in a panel of 24 pancreatic adenocarcinoma cell lines and 13 primary tumor specimens. This high-resolution genomic analysis has identified all known regional gains and losses as well as many previously uncharacterized highly recurrent copy number alterations. A systematic prioritization scheme has selected 64 focal minimal common regions (MCRs) of recurrent copy number change. These MCRs possess a median size of 2.7 megabases (Mb), with 21 (33%) MCRs spanning 1 Mb or less (median of 0.33 Mb) and possessing an average of 15 annotated genes. Furthermore, complementary expression profile analysis of a significant fraction of the genes residing within these 64 prioritized MCRs has enabled the identification of a subset of candidates with statistically significant association between gene dosage and mRNA expression. Thus, the integration of DNA and RNA profiles provides a highly productive entry point for the discovery of genes involved in the pathogenesis of pancreatic adenocarcinoma.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - genetics</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Chromosomes</subject><subject>Chromosomes - genetics</subject><subject>Chromosomes, Human, Pair 17</subject><subject>Comparative genomic hybridization</subject><subject>Computational Biology - methods</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - genetics</subject><subject>Gene Deletion</subject><subject>Gene Dosage</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genetic loci</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Medical research</subject><subject>Nucleic Acid Hybridization - methods</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pancreas</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Tumor cell line</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS1ERZeFMxcEEQfUS9rxR-L40EO1Kl2kSiAEZ8txJt2sknixHQT89XXYVRc4wMnyzO89e-YR8oLCOQXJL3ajCecggCnOKNBHZEFB0bwUCh6TBQCTeSWYOCVPQ9gCgCoqeEJOaUGVYowtyHrd3W3yTxhcP8XOjdlqY7yxEX330_wquDaLG8w-mtF6TCWbXTU4Omu87UY3mOwm3QZ8Rk5a0wd8fjiX5Mu768-rdX774eb96uo2t4WCmLfMlFiX0BiOUvC6MQwYxbawnKtaVoIWom2UpA2AAdmYGilU0CqsRFUC40tyuffdTfWAjcUxetPrne8G439oZzr9Z2fsNvrOfdOCVSK9uCRvD3rvvk4Yoh66YLHvzYhuCloy4KWkxX9BWqV1cqUS-OYvcOsmP6YlaAZ0TkbObhd7yHoXgsf24ccU9BylnqPUxyiT4tXvgx75Q3YJODsAs_JoRzUTWkEpdTv1fcTvMaGv_40m4uWe2Ibo_APCuWRcUX4Pwum78Q</recordid><startdate>20040615</startdate><enddate>20040615</enddate><creator>Aguirre, Andrew J.</creator><creator>Brennan, Cameron</creator><creator>Bailey, Gerald</creator><creator>Sinha, Raktim</creator><creator>Feng, Bin</creator><creator>Leo, Christopher</creator><creator>Zhang, Yunyu</creator><creator>Zhang, Jean</creator><creator>Gans, Joseph D.</creator><creator>Bardeesy, Nabeel</creator><creator>Cauwels, Craig</creator><creator>Cordon-Cardo, Carlos</creator><creator>Redston, Mark S.</creator><creator>DePinho, Ronald A.</creator><creator>Chin, Lynda</creator><creator>Cantley, Lewis C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040615</creationdate><title>High-Resolution Characterization of the Pancreatic Adenocarcinoma Genome</title><author>Aguirre, Andrew J. ; Brennan, Cameron ; Bailey, Gerald ; Sinha, Raktim ; Feng, Bin ; Leo, Christopher ; Zhang, Yunyu ; Zhang, Jean ; Gans, Joseph D. ; Bardeesy, Nabeel ; Cauwels, Craig ; Cordon-Cardo, Carlos ; Redston, Mark S. ; DePinho, Ronald A. ; Chin, Lynda ; Cantley, Lewis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-f2a6eb60da3e743bda2021ef5c339b784154fd971d00a07dabe1080f9e8486023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - genetics</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Chromosomes</topic><topic>Chromosomes - genetics</topic><topic>Chromosomes, Human, Pair 17</topic><topic>Comparative genomic hybridization</topic><topic>Computational Biology - methods</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - genetics</topic><topic>Gene Deletion</topic><topic>Gene Dosage</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genetic loci</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Medical research</topic><topic>Nucleic Acid Hybridization - methods</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pancreas</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Tumor cell line</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguirre, Andrew J.</creatorcontrib><creatorcontrib>Brennan, Cameron</creatorcontrib><creatorcontrib>Bailey, Gerald</creatorcontrib><creatorcontrib>Sinha, Raktim</creatorcontrib><creatorcontrib>Feng, Bin</creatorcontrib><creatorcontrib>Leo, Christopher</creatorcontrib><creatorcontrib>Zhang, Yunyu</creatorcontrib><creatorcontrib>Zhang, Jean</creatorcontrib><creatorcontrib>Gans, Joseph D.</creatorcontrib><creatorcontrib>Bardeesy, Nabeel</creatorcontrib><creatorcontrib>Cauwels, Craig</creatorcontrib><creatorcontrib>Cordon-Cardo, Carlos</creatorcontrib><creatorcontrib>Redston, Mark S.</creatorcontrib><creatorcontrib>DePinho, Ronald A.</creatorcontrib><creatorcontrib>Chin, Lynda</creatorcontrib><creatorcontrib>Cantley, Lewis C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguirre, Andrew J.</au><au>Brennan, Cameron</au><au>Bailey, Gerald</au><au>Sinha, Raktim</au><au>Feng, Bin</au><au>Leo, Christopher</au><au>Zhang, Yunyu</au><au>Zhang, Jean</au><au>Gans, Joseph D.</au><au>Bardeesy, Nabeel</au><au>Cauwels, Craig</au><au>Cordon-Cardo, Carlos</au><au>Redston, Mark S.</au><au>DePinho, Ronald A.</au><au>Chin, Lynda</au><au>Cantley, Lewis C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Characterization of the Pancreatic Adenocarcinoma Genome</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-06-15</date><risdate>2004</risdate><volume>101</volume><issue>24</issue><spage>9067</spage><epage>9072</epage><pages>9067-9072</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The pancreatic adenocarcinoma genome harbors multiple amplifications and deletions, pointing to the existence of numerous oncogenes and tumor suppressor genes driving the genesis and progression of this lethal cancer. Here, array comparative genomic hybridization on a cDNA microarray platform and informatics tools have been used to define the copy number alterations in a panel of 24 pancreatic adenocarcinoma cell lines and 13 primary tumor specimens. This high-resolution genomic analysis has identified all known regional gains and losses as well as many previously uncharacterized highly recurrent copy number alterations. A systematic prioritization scheme has selected 64 focal minimal common regions (MCRs) of recurrent copy number change. These MCRs possess a median size of 2.7 megabases (Mb), with 21 (33%) MCRs spanning 1 Mb or less (median of 0.33 Mb) and possessing an average of 15 annotated genes. Furthermore, complementary expression profile analysis of a significant fraction of the genes residing within these 64 prioritized MCRs has enabled the identification of a subset of candidates with statistically significant association between gene dosage and mRNA expression. Thus, the integration of DNA and RNA profiles provides a highly productive entry point for the discovery of genes involved in the pathogenesis of pancreatic adenocarcinoma.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15199222</pmid><doi>10.1073/pnas.0402932101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (24), p.9067-9072
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_428474
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenocarcinoma
Adenocarcinoma - genetics
Animals
Biological Sciences
Cancer
Cell Line, Tumor
Cell lines
Chromosomes
Chromosomes - genetics
Chromosomes, Human, Pair 17
Comparative genomic hybridization
Computational Biology - methods
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Gene Deletion
Gene Dosage
Gene Expression
Genes
Genetic loci
Genome
Genomes
Genomics
Homozygote
Humans
Medical research
Nucleic Acid Hybridization - methods
Oligonucleotide Array Sequence Analysis
Pancreas
Pancreatic Neoplasms - genetics
Tumor cell line
Tumors
title High-Resolution Characterization of the Pancreatic Adenocarcinoma Genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Characterization%20of%20the%20Pancreatic%20Adenocarcinoma%20Genome&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Aguirre,%20Andrew%20J.&rft.date=2004-06-15&rft.volume=101&rft.issue=24&rft.spage=9067&rft.epage=9072&rft.pages=9067-9072&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0402932101&rft_dat=%3Cjstor_pubme%3E3372391%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201293275&rft_id=info:pmid/15199222&rft_jstor_id=3372391&rfr_iscdi=true