Thermotropic liquid crystals from biomacromolecules

Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-12, Vol.111 (52), p.18596-18600
Hauptverfasser: Liu, Kai, Chen, Dong, Marcozzi, Alessio, Zheng, Lifei, Su, Juanjuan, Pesce, Diego, Zajaczkowski, Wojciech, Kolbe, Anke, Pisula, Wojciech, Müllen, Klaus, Clark, Noel A., Herrmann, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18600
container_issue 52
container_start_page 18596
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Liu, Kai
Chen, Dong
Marcozzi, Alessio
Zheng, Lifei
Su, Juanjuan
Pesce, Diego
Zajaczkowski, Wojciech
Kolbe, Anke
Pisula, Wojciech
Müllen, Klaus
Clark, Noel A.
Herrmann, Andreas
description Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm.
doi_str_mv 10.1073/pnas.1421257111
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4284556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43278890</jstor_id><sourcerecordid>43278890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVJaTbbnnNqY8ilFycaffsSKKFJC4EempyFLEuJFtvaSHYh_31ldrtpe9LA-81o5j2ETgFfAJb0cjuafAGMAOESAN6gFeAGasEafIRWGBNZK0bYMTrJeYMxbrjC79Ax4bx0YLVC9P7JpSFOKW6DrfrwPIeusuklT6bPlU9xqNoQB2NLFXtn597l9-itL6r7sH_X6OHm6_31t_rux-336y93teVcTbX34CwG1XDBLRWukyAdF7RzyhHBwMtOekOoUaalxBJPXNsaYjwDqrqO0TW62s3dzu3gOuvGKZleb1MYTHrR0QT9rzKGJ_0Yf2lGFOPlpzX6vB-Q4vPs8qSHkK3rezO6OGcNZQtGBGekoOf_oZs4p7Gct1BcSioFFOpyRxU7ck7OH5YBrJdA9BKIfg2kdHz6-4YD_yeBAlR7YOk8jAPQnGhQvFnO-LhDNnmK6cAwSqRSDS762U73JmrzmELWDz8JBoFxcVIUI34Dgs-lAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645773761</pqid></control><display><type>article</type><title>Thermotropic liquid crystals from biomacromolecules</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Kai ; Chen, Dong ; Marcozzi, Alessio ; Zheng, Lifei ; Su, Juanjuan ; Pesce, Diego ; Zajaczkowski, Wojciech ; Kolbe, Anke ; Pisula, Wojciech ; Müllen, Klaus ; Clark, Noel A. ; Herrmann, Andreas</creator><creatorcontrib>Liu, Kai ; Chen, Dong ; Marcozzi, Alessio ; Zheng, Lifei ; Su, Juanjuan ; Pesce, Diego ; Zajaczkowski, Wojciech ; Kolbe, Anke ; Pisula, Wojciech ; Müllen, Klaus ; Clark, Noel A. ; Herrmann, Andreas</creatorcontrib><description>Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1421257111</identifier><identifier>PMID: 25512508</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteriophages ; Biological Sciences ; Crystallization ; Crystals ; DNA ; DNA - chemistry ; Hydrocarbons ; Liquid crystals ; Liquid Crystals - chemistry ; Materials ; Molecular biology ; Molecular structure ; Molecules ; Nucleic acids ; Phase Transition ; Phase transitions ; Physical Sciences ; Polymers ; Surfactants ; Temperature effects ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18596-18600</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</citedby><cites>FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43278890$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43278890$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25512508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Marcozzi, Alessio</creatorcontrib><creatorcontrib>Zheng, Lifei</creatorcontrib><creatorcontrib>Su, Juanjuan</creatorcontrib><creatorcontrib>Pesce, Diego</creatorcontrib><creatorcontrib>Zajaczkowski, Wojciech</creatorcontrib><creatorcontrib>Kolbe, Anke</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Clark, Noel A.</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><title>Thermotropic liquid crystals from biomacromolecules</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm.</description><subject>Bacteriophages</subject><subject>Biological Sciences</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Hydrocarbons</subject><subject>Liquid crystals</subject><subject>Liquid Crystals - chemistry</subject><subject>Materials</subject><subject>Molecular biology</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Nucleic acids</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Surfactants</subject><subject>Temperature effects</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVJaTbbnnNqY8ilFycaffsSKKFJC4EempyFLEuJFtvaSHYh_31ldrtpe9LA-81o5j2ETgFfAJb0cjuafAGMAOESAN6gFeAGasEafIRWGBNZK0bYMTrJeYMxbrjC79Ax4bx0YLVC9P7JpSFOKW6DrfrwPIeusuklT6bPlU9xqNoQB2NLFXtn597l9-itL6r7sH_X6OHm6_31t_rux-336y93teVcTbX34CwG1XDBLRWukyAdF7RzyhHBwMtOekOoUaalxBJPXNsaYjwDqrqO0TW62s3dzu3gOuvGKZleb1MYTHrR0QT9rzKGJ_0Yf2lGFOPlpzX6vB-Q4vPs8qSHkK3rezO6OGcNZQtGBGekoOf_oZs4p7Gct1BcSioFFOpyRxU7ck7OH5YBrJdA9BKIfg2kdHz6-4YD_yeBAlR7YOk8jAPQnGhQvFnO-LhDNnmK6cAwSqRSDS762U73JmrzmELWDz8JBoFxcVIUI34Dgs-lAw</recordid><startdate>20141230</startdate><enddate>20141230</enddate><creator>Liu, Kai</creator><creator>Chen, Dong</creator><creator>Marcozzi, Alessio</creator><creator>Zheng, Lifei</creator><creator>Su, Juanjuan</creator><creator>Pesce, Diego</creator><creator>Zajaczkowski, Wojciech</creator><creator>Kolbe, Anke</creator><creator>Pisula, Wojciech</creator><creator>Müllen, Klaus</creator><creator>Clark, Noel A.</creator><creator>Herrmann, Andreas</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141230</creationdate><title>Thermotropic liquid crystals from biomacromolecules</title><author>Liu, Kai ; Chen, Dong ; Marcozzi, Alessio ; Zheng, Lifei ; Su, Juanjuan ; Pesce, Diego ; Zajaczkowski, Wojciech ; Kolbe, Anke ; Pisula, Wojciech ; Müllen, Klaus ; Clark, Noel A. ; Herrmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteriophages</topic><topic>Biological Sciences</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Hydrocarbons</topic><topic>Liquid crystals</topic><topic>Liquid Crystals - chemistry</topic><topic>Materials</topic><topic>Molecular biology</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Nucleic acids</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Surfactants</topic><topic>Temperature effects</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Marcozzi, Alessio</creatorcontrib><creatorcontrib>Zheng, Lifei</creatorcontrib><creatorcontrib>Su, Juanjuan</creatorcontrib><creatorcontrib>Pesce, Diego</creatorcontrib><creatorcontrib>Zajaczkowski, Wojciech</creatorcontrib><creatorcontrib>Kolbe, Anke</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Clark, Noel A.</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kai</au><au>Chen, Dong</au><au>Marcozzi, Alessio</au><au>Zheng, Lifei</au><au>Su, Juanjuan</au><au>Pesce, Diego</au><au>Zajaczkowski, Wojciech</au><au>Kolbe, Anke</au><au>Pisula, Wojciech</au><au>Müllen, Klaus</au><au>Clark, Noel A.</au><au>Herrmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermotropic liquid crystals from biomacromolecules</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-12-30</date><risdate>2014</risdate><volume>111</volume><issue>52</issue><spage>18596</spage><epage>18600</epage><pages>18596-18600</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25512508</pmid><doi>10.1073/pnas.1421257111</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18596-18600
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4284556
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacteriophages
Biological Sciences
Crystallization
Crystals
DNA
DNA - chemistry
Hydrocarbons
Liquid crystals
Liquid Crystals - chemistry
Materials
Molecular biology
Molecular structure
Molecules
Nucleic acids
Phase Transition
Phase transitions
Physical Sciences
Polymers
Surfactants
Temperature effects
Viruses
title Thermotropic liquid crystals from biomacromolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermotropic%20liquid%20crystals%20from%20biomacromolecules&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Kai&rft.date=2014-12-30&rft.volume=111&rft.issue=52&rft.spage=18596&rft.epage=18600&rft.pages=18596-18600&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1421257111&rft_dat=%3Cjstor_pubme%3E43278890%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645773761&rft_id=info:pmid/25512508&rft_jstor_id=43278890&rfr_iscdi=true