Thermotropic liquid crystals from biomacromolecules
Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-12, Vol.111 (52), p.18596-18600 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18600 |
---|---|
container_issue | 52 |
container_start_page | 18596 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Liu, Kai Chen, Dong Marcozzi, Alessio Zheng, Lifei Su, Juanjuan Pesce, Diego Zajaczkowski, Wojciech Kolbe, Anke Pisula, Wojciech Müllen, Klaus Clark, Noel A. Herrmann, Andreas |
description | Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components.
Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm. |
doi_str_mv | 10.1073/pnas.1421257111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4284556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43278890</jstor_id><sourcerecordid>43278890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVJaTbbnnNqY8ilFycaffsSKKFJC4EempyFLEuJFtvaSHYh_31ldrtpe9LA-81o5j2ETgFfAJb0cjuafAGMAOESAN6gFeAGasEafIRWGBNZK0bYMTrJeYMxbrjC79Ax4bx0YLVC9P7JpSFOKW6DrfrwPIeusuklT6bPlU9xqNoQB2NLFXtn597l9-itL6r7sH_X6OHm6_31t_rux-336y93teVcTbX34CwG1XDBLRWukyAdF7RzyhHBwMtOekOoUaalxBJPXNsaYjwDqrqO0TW62s3dzu3gOuvGKZleb1MYTHrR0QT9rzKGJ_0Yf2lGFOPlpzX6vB-Q4vPs8qSHkK3rezO6OGcNZQtGBGekoOf_oZs4p7Gct1BcSioFFOpyRxU7ck7OH5YBrJdA9BKIfg2kdHz6-4YD_yeBAlR7YOk8jAPQnGhQvFnO-LhDNnmK6cAwSqRSDS762U73JmrzmELWDz8JBoFxcVIUI34Dgs-lAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645773761</pqid></control><display><type>article</type><title>Thermotropic liquid crystals from biomacromolecules</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Kai ; Chen, Dong ; Marcozzi, Alessio ; Zheng, Lifei ; Su, Juanjuan ; Pesce, Diego ; Zajaczkowski, Wojciech ; Kolbe, Anke ; Pisula, Wojciech ; Müllen, Klaus ; Clark, Noel A. ; Herrmann, Andreas</creator><creatorcontrib>Liu, Kai ; Chen, Dong ; Marcozzi, Alessio ; Zheng, Lifei ; Su, Juanjuan ; Pesce, Diego ; Zajaczkowski, Wojciech ; Kolbe, Anke ; Pisula, Wojciech ; Müllen, Klaus ; Clark, Noel A. ; Herrmann, Andreas</creatorcontrib><description>Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components.
Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1421257111</identifier><identifier>PMID: 25512508</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteriophages ; Biological Sciences ; Crystallization ; Crystals ; DNA ; DNA - chemistry ; Hydrocarbons ; Liquid crystals ; Liquid Crystals - chemistry ; Materials ; Molecular biology ; Molecular structure ; Molecules ; Nucleic acids ; Phase Transition ; Phase transitions ; Physical Sciences ; Polymers ; Surfactants ; Temperature effects ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18596-18600</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</citedby><cites>FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43278890$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43278890$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25512508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Marcozzi, Alessio</creatorcontrib><creatorcontrib>Zheng, Lifei</creatorcontrib><creatorcontrib>Su, Juanjuan</creatorcontrib><creatorcontrib>Pesce, Diego</creatorcontrib><creatorcontrib>Zajaczkowski, Wojciech</creatorcontrib><creatorcontrib>Kolbe, Anke</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Clark, Noel A.</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><title>Thermotropic liquid crystals from biomacromolecules</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components.
Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm.</description><subject>Bacteriophages</subject><subject>Biological Sciences</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Hydrocarbons</subject><subject>Liquid crystals</subject><subject>Liquid Crystals - chemistry</subject><subject>Materials</subject><subject>Molecular biology</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Nucleic acids</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Surfactants</subject><subject>Temperature effects</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVJaTbbnnNqY8ilFycaffsSKKFJC4EempyFLEuJFtvaSHYh_31ldrtpe9LA-81o5j2ETgFfAJb0cjuafAGMAOESAN6gFeAGasEafIRWGBNZK0bYMTrJeYMxbrjC79Ax4bx0YLVC9P7JpSFOKW6DrfrwPIeusuklT6bPlU9xqNoQB2NLFXtn597l9-itL6r7sH_X6OHm6_31t_rux-336y93teVcTbX34CwG1XDBLRWukyAdF7RzyhHBwMtOekOoUaalxBJPXNsaYjwDqrqO0TW62s3dzu3gOuvGKZleb1MYTHrR0QT9rzKGJ_0Yf2lGFOPlpzX6vB-Q4vPs8qSHkK3rezO6OGcNZQtGBGekoOf_oZs4p7Gct1BcSioFFOpyRxU7ck7OH5YBrJdA9BKIfg2kdHz6-4YD_yeBAlR7YOk8jAPQnGhQvFnO-LhDNnmK6cAwSqRSDS762U73JmrzmELWDz8JBoFxcVIUI34Dgs-lAw</recordid><startdate>20141230</startdate><enddate>20141230</enddate><creator>Liu, Kai</creator><creator>Chen, Dong</creator><creator>Marcozzi, Alessio</creator><creator>Zheng, Lifei</creator><creator>Su, Juanjuan</creator><creator>Pesce, Diego</creator><creator>Zajaczkowski, Wojciech</creator><creator>Kolbe, Anke</creator><creator>Pisula, Wojciech</creator><creator>Müllen, Klaus</creator><creator>Clark, Noel A.</creator><creator>Herrmann, Andreas</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141230</creationdate><title>Thermotropic liquid crystals from biomacromolecules</title><author>Liu, Kai ; Chen, Dong ; Marcozzi, Alessio ; Zheng, Lifei ; Su, Juanjuan ; Pesce, Diego ; Zajaczkowski, Wojciech ; Kolbe, Anke ; Pisula, Wojciech ; Müllen, Klaus ; Clark, Noel A. ; Herrmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-ff1ec0189565c36ed717e563de8e2641f7d7fa23a8ab32c2f2ebba2af4138dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteriophages</topic><topic>Biological Sciences</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Hydrocarbons</topic><topic>Liquid crystals</topic><topic>Liquid Crystals - chemistry</topic><topic>Materials</topic><topic>Molecular biology</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Nucleic acids</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Surfactants</topic><topic>Temperature effects</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Marcozzi, Alessio</creatorcontrib><creatorcontrib>Zheng, Lifei</creatorcontrib><creatorcontrib>Su, Juanjuan</creatorcontrib><creatorcontrib>Pesce, Diego</creatorcontrib><creatorcontrib>Zajaczkowski, Wojciech</creatorcontrib><creatorcontrib>Kolbe, Anke</creatorcontrib><creatorcontrib>Pisula, Wojciech</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Clark, Noel A.</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kai</au><au>Chen, Dong</au><au>Marcozzi, Alessio</au><au>Zheng, Lifei</au><au>Su, Juanjuan</au><au>Pesce, Diego</au><au>Zajaczkowski, Wojciech</au><au>Kolbe, Anke</au><au>Pisula, Wojciech</au><au>Müllen, Klaus</au><au>Clark, Noel A.</au><au>Herrmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermotropic liquid crystals from biomacromolecules</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-12-30</date><risdate>2014</risdate><volume>111</volume><issue>52</issue><spage>18596</spage><epage>18600</epage><pages>18596-18600</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components.
Significance Liquid crystals (LCs) found in biology are usually dispersed in a solvent, typically water, and are therefore classified as lyotropic. However, from a technological perspective, thermotropic LCs (TLCs), typically based on small rod- or disc-shaped organic molecules, have been of much greater importance. In this contribution, we show that thermotropic liquid crystal phases and materials can also be made from biomolecules, demonstrating a simple generic method to form thermotropic phases from biosystems ranging from nucleic acids and proteins to even whole viruses, spanning a size from only a few nanometers to 1 μm.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25512508</pmid><doi>10.1073/pnas.1421257111</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18596-18600 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4284556 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteriophages Biological Sciences Crystallization Crystals DNA DNA - chemistry Hydrocarbons Liquid crystals Liquid Crystals - chemistry Materials Molecular biology Molecular structure Molecules Nucleic acids Phase Transition Phase transitions Physical Sciences Polymers Surfactants Temperature effects Viruses |
title | Thermotropic liquid crystals from biomacromolecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermotropic%20liquid%20crystals%20from%20biomacromolecules&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Kai&rft.date=2014-12-30&rft.volume=111&rft.issue=52&rft.spage=18596&rft.epage=18600&rft.pages=18596-18600&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1421257111&rft_dat=%3Cjstor_pubme%3E43278890%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645773761&rft_id=info:pmid/25512508&rft_jstor_id=43278890&rfr_iscdi=true |