Control of Cardiac Repolarization by Phosphoinositide 3-Kinase Signaling to Ion Channels
Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced lon...
Gespeichert in:
Veröffentlicht in: | Circulation research 2015-01, Vol.116 (1), p.127-137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 1 |
container_start_page | 127 |
container_title | Circulation research |
container_volume | 116 |
creator | Ballou, Lisa M Lin, Richard Z Cohen, Ira S |
description | Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility. |
doi_str_mv | 10.1161/CIRCRESAHA.116.303975 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4283553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1657316807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4560-bbe26181d63b25b13a9e40708826d83b3d9ae1173ae70754bc1474777fb2a96e3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EokvhJ4By5JIy4484uSCtokJXVAJtQeJmOcnsxuC1FztLVX49WW0pcLLG88xrjx7GXiJcIFb4pl2t2_XlzfJqeawvBIhGq0dsgYrLUiqNj9kCAJpSCwFn7FnO3wBQCt48ZWdcKcWrhi_Y1zaGKUVfxE3R2jQ42xdr2kdvk_tlJxdD0d0Vn8aY92N0IWY3uYEKUX5wwWYqbtw2WO_CtphisZrpdrQhkM_P2ZON9Zle3J_n7Mu7y8_tVXn98f2qXV6XvVQVlF1HvMIah0p0XHUobEMSNNQ1r4ZadGJoLCFqYUmDVrLrUWqptd503DYViXP29pS7P3Q7Gnqa17He7JPb2XRnonXm_05wo9nGn0byWigl5oDX9wEp_jhQnszO5Z68t4HiIRuslBZY1aBnVJ3QPsWcE20enkEwRyvmr5VjbU5W5rlX__7xYeqPhhmQJ-A2-olS_u4Pt5TMSNZPo5k1ggDkJQdUgMChnG84iN_CJZlb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1657316807</pqid></control><display><type>article</type><title>Control of Cardiac Repolarization by Phosphoinositide 3-Kinase Signaling to Ion Channels</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Ballou, Lisa M ; Lin, Richard Z ; Cohen, Ira S</creator><creatorcontrib>Ballou, Lisa M ; Lin, Richard Z ; Cohen, Ira S</creatorcontrib><description>Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.116.303975</identifier><identifier>PMID: 25552692</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Action Potentials - physiology ; Animals ; Heart Conduction System - physiology ; Humans ; Ion Channels - physiology ; Long QT Syndrome - diagnosis ; Long QT Syndrome - physiopathology ; Phosphatidylinositol 3-Kinases - physiology ; Signal Transduction - physiology</subject><ispartof>Circulation research, 2015-01, Vol.116 (1), p.127-137</ispartof><rights>2015 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4560-bbe26181d63b25b13a9e40708826d83b3d9ae1173ae70754bc1474777fb2a96e3</citedby><cites>FETCH-LOGICAL-c4560-bbe26181d63b25b13a9e40708826d83b3d9ae1173ae70754bc1474777fb2a96e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3673,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25552692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballou, Lisa M</creatorcontrib><creatorcontrib>Lin, Richard Z</creatorcontrib><creatorcontrib>Cohen, Ira S</creatorcontrib><title>Control of Cardiac Repolarization by Phosphoinositide 3-Kinase Signaling to Ion Channels</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Heart Conduction System - physiology</subject><subject>Humans</subject><subject>Ion Channels - physiology</subject><subject>Long QT Syndrome - diagnosis</subject><subject>Long QT Syndrome - physiopathology</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Signal Transduction - physiology</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EokvhJ4By5JIy4484uSCtokJXVAJtQeJmOcnsxuC1FztLVX49WW0pcLLG88xrjx7GXiJcIFb4pl2t2_XlzfJqeawvBIhGq0dsgYrLUiqNj9kCAJpSCwFn7FnO3wBQCt48ZWdcKcWrhi_Y1zaGKUVfxE3R2jQ42xdr2kdvk_tlJxdD0d0Vn8aY92N0IWY3uYEKUX5wwWYqbtw2WO_CtphisZrpdrQhkM_P2ZON9Zle3J_n7Mu7y8_tVXn98f2qXV6XvVQVlF1HvMIah0p0XHUobEMSNNQ1r4ZadGJoLCFqYUmDVrLrUWqptd503DYViXP29pS7P3Q7Gnqa17He7JPb2XRnonXm_05wo9nGn0byWigl5oDX9wEp_jhQnszO5Z68t4HiIRuslBZY1aBnVJ3QPsWcE20enkEwRyvmr5VjbU5W5rlX__7xYeqPhhmQJ-A2-olS_u4Pt5TMSNZPo5k1ggDkJQdUgMChnG84iN_CJZlb</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Ballou, Lisa M</creator><creator>Lin, Richard Z</creator><creator>Cohen, Ira S</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150102</creationdate><title>Control of Cardiac Repolarization by Phosphoinositide 3-Kinase Signaling to Ion Channels</title><author>Ballou, Lisa M ; Lin, Richard Z ; Cohen, Ira S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4560-bbe26181d63b25b13a9e40708826d83b3d9ae1173ae70754bc1474777fb2a96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Heart Conduction System - physiology</topic><topic>Humans</topic><topic>Ion Channels - physiology</topic><topic>Long QT Syndrome - diagnosis</topic><topic>Long QT Syndrome - physiopathology</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballou, Lisa M</creatorcontrib><creatorcontrib>Lin, Richard Z</creatorcontrib><creatorcontrib>Cohen, Ira S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballou, Lisa M</au><au>Lin, Richard Z</au><au>Cohen, Ira S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Cardiac Repolarization by Phosphoinositide 3-Kinase Signaling to Ion Channels</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2015-01-02</date><risdate>2015</risdate><volume>116</volume><issue>1</issue><spage>127</spage><epage>137</epage><pages>127-137</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>25552692</pmid><doi>10.1161/CIRCRESAHA.116.303975</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2015-01, Vol.116 (1), p.127-137 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4283553 |
source | MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete |
subjects | Action Potentials - physiology Animals Heart Conduction System - physiology Humans Ion Channels - physiology Long QT Syndrome - diagnosis Long QT Syndrome - physiopathology Phosphatidylinositol 3-Kinases - physiology Signal Transduction - physiology |
title | Control of Cardiac Repolarization by Phosphoinositide 3-Kinase Signaling to Ion Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Cardiac%20Repolarization%20by%20Phosphoinositide%203-Kinase%20Signaling%20to%20Ion%20Channels&rft.jtitle=Circulation%20research&rft.au=Ballou,%20Lisa%20M&rft.date=2015-01-02&rft.volume=116&rft.issue=1&rft.spage=127&rft.epage=137&rft.pages=127-137&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.116.303975&rft_dat=%3Cproquest_pubme%3E1657316807%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1657316807&rft_id=info:pmid/25552692&rfr_iscdi=true |