The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase

The exosome is a conserved multi‐subunit ribonuclease complex that functions in 3′ end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10‐subunit core complex of the exosome (Exo‐10) physically and functionally interacts with the Rrp6 exoribonuclease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2014-12, Vol.33 (23), p.2829-2846
Hauptverfasser: Schuch, Benjamin, Feigenbutz, Monika, Makino, Debora L, Falk, Sebastian, Basquin, Claire, Mitchell, Phil, Conti, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2846
container_issue 23
container_start_page 2829
container_title The EMBO journal
container_volume 33
creator Schuch, Benjamin
Feigenbutz, Monika
Makino, Debora L
Falk, Sebastian
Basquin, Claire
Mitchell, Phil
Conti, Elena
description The exosome is a conserved multi‐subunit ribonuclease complex that functions in 3′ end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10‐subunit core complex of the exosome (Exo‐10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo‐10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N‐terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N‐terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C‐terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6–Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome. Synopsis Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47. The N‐terminal domains of S. cerevisiae Rrp6 and Rrp47 form a highly intertwined structural unit. The Rrp6–Rrp47 complex creates a composite and conserved surface groove that binds the N‐terminus of Mtr4 and recruits Mtr4 to the nuclear exosome. Structure‐based mutations of conserved residues within Rrp6 and Mtr4 disrupt their interaction, result in 5.8S RNA processing defects in vivo and inhibit growth of strains expressing a C‐terminal GFP fusion of Mtr4. Graphical Abstract Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47.
doi_str_mv 10.15252/embj.201488757
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4282559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629963831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6177-d5d36b0fb213212bcf5cf3504294cd5308e35cc2210c63878c469e61bf32e71c3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhzQ5ZYsMmrd9OWCDRB4WqLQgVIbGxHOdmxkMSD3YC7b_HIWU0ICFWtnS_c-65Oln2lOADIqigh9BV6wOKCS8KJdS9bEG4xDnFStzPFphKknNSlHvZoxjXGGNRKPIw26OCkZITvsjq6xUguPHRd5BXrq9dv0SNsYMPEX0MG4lMX08frlDjQ4cMsr7b-OgGQHEMCYVpgALYMLphkg_J8nIIHK2gddZEeJw9aEwb4cndu599enN6ffw2v3h_9u749UVuJVEqr0XNZIWbihJGCa1sI2zDBOa05LYWDBfAhLWUEmwlK1RhuSxBkqphFBSxbD97NftuxqqD2kI_BNPqTXCdCbfaG6f_nPRupZf-u-a0oEKUyeDFnUHw30aIg-5ctNC2pgc_Rk0kLcu0mpGEPv8LXfsx9Om8iSoKzomQiTqcKRt8jAGabRiC9a8G9dSg3jaYFM92b9jyvytLwMsZ-OFauP2fnz69PDrfdcezOCZdv4Swk_qfgfJZ4uIAN9t9JnzVUjEl9OerM_3h6vzohLMv-oT9BLuVxv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1628844156</pqid></control><display><type>article</type><title>The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase</title><source>Springer Nature OA Free Journals</source><creator>Schuch, Benjamin ; Feigenbutz, Monika ; Makino, Debora L ; Falk, Sebastian ; Basquin, Claire ; Mitchell, Phil ; Conti, Elena</creator><creatorcontrib>Schuch, Benjamin ; Feigenbutz, Monika ; Makino, Debora L ; Falk, Sebastian ; Basquin, Claire ; Mitchell, Phil ; Conti, Elena</creatorcontrib><description>The exosome is a conserved multi‐subunit ribonuclease complex that functions in 3′ end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10‐subunit core complex of the exosome (Exo‐10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo‐10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N‐terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N‐terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C‐terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6–Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome. Synopsis Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47. The N‐terminal domains of S. cerevisiae Rrp6 and Rrp47 form a highly intertwined structural unit. The Rrp6–Rrp47 complex creates a composite and conserved surface groove that binds the N‐terminus of Mtr4 and recruits Mtr4 to the nuclear exosome. Structure‐based mutations of conserved residues within Rrp6 and Mtr4 disrupt their interaction, result in 5.8S RNA processing defects in vivo and inhibit growth of strains expressing a C‐terminal GFP fusion of Mtr4. Graphical Abstract Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201488757</identifier><identifier>PMID: 25319414</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Blotting, Western ; Calorimetry ; Chromatography, Gel ; Crystallization ; Crystallography ; DEAD-box RNA Helicases - chemistry ; DEAD-box RNA Helicases - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Electrophoresis, Polyacrylamide Gel ; EMBO36 ; EMBO40 ; Enzymes ; Escherichia coli ; Exosome Multienzyme Ribonuclease Complex - chemistry ; Exosome Multienzyme Ribonuclease Complex - metabolism ; Fluorescence Polarization ; Models, Molecular ; Molecular biology ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Mutation ; nuclear exosome ; Nuclear Proteins - chemistry ; Nuclear Proteins - metabolism ; Oligonucleotide Probes ; Protein Conformation ; Ribonucleic acid ; RNA ; RNA degradation ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - metabolism ; Rosaniline Dyes ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; X-ray crystallography ; yeast genetics ; Yeasts</subject><ispartof>The EMBO journal, 2014-12, Vol.33 (23), p.2829-2846</ispartof><rights>The Authors 2014</rights><rights>2014 The Authors</rights><rights>2014 The Authors.</rights><rights>2014 EMBO</rights><rights>2014 The Authors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6177-d5d36b0fb213212bcf5cf3504294cd5308e35cc2210c63878c469e61bf32e71c3</citedby><cites>FETCH-LOGICAL-c6177-d5d36b0fb213212bcf5cf3504294cd5308e35cc2210c63878c469e61bf32e71c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282559/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282559/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,41099,42168,45553,45554,46387,46811,51554,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201488757$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25319414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schuch, Benjamin</creatorcontrib><creatorcontrib>Feigenbutz, Monika</creatorcontrib><creatorcontrib>Makino, Debora L</creatorcontrib><creatorcontrib>Falk, Sebastian</creatorcontrib><creatorcontrib>Basquin, Claire</creatorcontrib><creatorcontrib>Mitchell, Phil</creatorcontrib><creatorcontrib>Conti, Elena</creatorcontrib><title>The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The exosome is a conserved multi‐subunit ribonuclease complex that functions in 3′ end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10‐subunit core complex of the exosome (Exo‐10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo‐10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N‐terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N‐terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C‐terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6–Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome. Synopsis Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47. The N‐terminal domains of S. cerevisiae Rrp6 and Rrp47 form a highly intertwined structural unit. The Rrp6–Rrp47 complex creates a composite and conserved surface groove that binds the N‐terminus of Mtr4 and recruits Mtr4 to the nuclear exosome. Structure‐based mutations of conserved residues within Rrp6 and Mtr4 disrupt their interaction, result in 5.8S RNA processing defects in vivo and inhibit growth of strains expressing a C‐terminal GFP fusion of Mtr4. Graphical Abstract Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47.</description><subject>Blotting, Western</subject><subject>Calorimetry</subject><subject>Chromatography, Gel</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>DEAD-box RNA Helicases - chemistry</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>EMBO36</subject><subject>EMBO40</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Exosome Multienzyme Ribonuclease Complex - chemistry</subject><subject>Exosome Multienzyme Ribonuclease Complex - metabolism</subject><subject>Fluorescence Polarization</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation</subject><subject>nuclear exosome</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oligonucleotide Probes</subject><subject>Protein Conformation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA degradation</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Rosaniline Dyes</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>X-ray crystallography</subject><subject>yeast genetics</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEokNhzQ5ZYsMmrd9OWCDRB4WqLQgVIbGxHOdmxkMSD3YC7b_HIWU0ICFWtnS_c-65Oln2lOADIqigh9BV6wOKCS8KJdS9bEG4xDnFStzPFphKknNSlHvZoxjXGGNRKPIw26OCkZITvsjq6xUguPHRd5BXrq9dv0SNsYMPEX0MG4lMX08frlDjQ4cMsr7b-OgGQHEMCYVpgALYMLphkg_J8nIIHK2gddZEeJw9aEwb4cndu599enN6ffw2v3h_9u749UVuJVEqr0XNZIWbihJGCa1sI2zDBOa05LYWDBfAhLWUEmwlK1RhuSxBkqphFBSxbD97NftuxqqD2kI_BNPqTXCdCbfaG6f_nPRupZf-u-a0oEKUyeDFnUHw30aIg-5ctNC2pgc_Rk0kLcu0mpGEPv8LXfsx9Om8iSoKzomQiTqcKRt8jAGabRiC9a8G9dSg3jaYFM92b9jyvytLwMsZ-OFauP2fnz69PDrfdcezOCZdv4Swk_qfgfJZ4uIAN9t9JnzVUjEl9OerM_3h6vzohLMv-oT9BLuVxv4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Schuch, Benjamin</creator><creator>Feigenbutz, Monika</creator><creator>Makino, Debora L</creator><creator>Falk, Sebastian</creator><creator>Basquin, Claire</creator><creator>Mitchell, Phil</creator><creator>Conti, Elena</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141201</creationdate><title>The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase</title><author>Schuch, Benjamin ; Feigenbutz, Monika ; Makino, Debora L ; Falk, Sebastian ; Basquin, Claire ; Mitchell, Phil ; Conti, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6177-d5d36b0fb213212bcf5cf3504294cd5308e35cc2210c63878c469e61bf32e71c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blotting, Western</topic><topic>Calorimetry</topic><topic>Chromatography, Gel</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>DEAD-box RNA Helicases - chemistry</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>EMBO36</topic><topic>EMBO40</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Exosome Multienzyme Ribonuclease Complex - chemistry</topic><topic>Exosome Multienzyme Ribonuclease Complex - metabolism</topic><topic>Fluorescence Polarization</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation</topic><topic>nuclear exosome</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oligonucleotide Probes</topic><topic>Protein Conformation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA degradation</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Rosaniline Dyes</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>X-ray crystallography</topic><topic>yeast genetics</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuch, Benjamin</creatorcontrib><creatorcontrib>Feigenbutz, Monika</creatorcontrib><creatorcontrib>Makino, Debora L</creatorcontrib><creatorcontrib>Falk, Sebastian</creatorcontrib><creatorcontrib>Basquin, Claire</creatorcontrib><creatorcontrib>Mitchell, Phil</creatorcontrib><creatorcontrib>Conti, Elena</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schuch, Benjamin</au><au>Feigenbutz, Monika</au><au>Makino, Debora L</au><au>Falk, Sebastian</au><au>Basquin, Claire</au><au>Mitchell, Phil</au><au>Conti, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>33</volume><issue>23</issue><spage>2829</spage><epage>2846</epage><pages>2829-2846</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The exosome is a conserved multi‐subunit ribonuclease complex that functions in 3′ end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10‐subunit core complex of the exosome (Exo‐10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo‐10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N‐terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N‐terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C‐terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6–Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome. Synopsis Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47. The N‐terminal domains of S. cerevisiae Rrp6 and Rrp47 form a highly intertwined structural unit. The Rrp6–Rrp47 complex creates a composite and conserved surface groove that binds the N‐terminus of Mtr4 and recruits Mtr4 to the nuclear exosome. Structure‐based mutations of conserved residues within Rrp6 and Mtr4 disrupt their interaction, result in 5.8S RNA processing defects in vivo and inhibit growth of strains expressing a C‐terminal GFP fusion of Mtr4. Graphical Abstract Mtr4 is an RNA helicase involved in targeting nuclear RNAs for degradation. A new crystal structure reveals the basis for Mtr4 recruitment on the nuclear exosome through a direct interaction with Rrp6 and Rrp47.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>25319414</pmid><doi>10.15252/embj.201488757</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2014-12, Vol.33 (23), p.2829-2846
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4282559
source Springer Nature OA Free Journals
subjects Blotting, Western
Calorimetry
Chromatography, Gel
Crystallization
Crystallography
DEAD-box RNA Helicases - chemistry
DEAD-box RNA Helicases - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Electrophoresis, Polyacrylamide Gel
EMBO36
EMBO40
Enzymes
Escherichia coli
Exosome Multienzyme Ribonuclease Complex - chemistry
Exosome Multienzyme Ribonuclease Complex - metabolism
Fluorescence Polarization
Models, Molecular
Molecular biology
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Mutation
nuclear exosome
Nuclear Proteins - chemistry
Nuclear Proteins - metabolism
Oligonucleotide Probes
Protein Conformation
Ribonucleic acid
RNA
RNA degradation
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - metabolism
Rosaniline Dyes
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
X-ray crystallography
yeast genetics
Yeasts
title The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20exosome-binding%20factors%20Rrp6%20and%20Rrp47%20form%20a%20composite%20surface%20for%20recruiting%20the%20Mtr4%20helicase&rft.jtitle=The%20EMBO%20journal&rft.au=Schuch,%20Benjamin&rft.date=2014-12-01&rft.volume=33&rft.issue=23&rft.spage=2829&rft.epage=2846&rft.pages=2829-2846&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201488757&rft_dat=%3Cproquest_C6C%3E1629963831%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1628844156&rft_id=info:pmid/25319414&rfr_iscdi=true