Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation
Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly( L -lactide) and poly( D -lactide) has led to improved properties compared with each homochiral material. Herein, we report the pr...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-12, Vol.5 (1), p.5746, Article 5746 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 5746 |
container_title | Nature communications |
container_volume | 5 |
creator | Sun, Liang Pitto-Barry, Anaïs Kirby, Nigel Schiller, Tara L. Sanchez, Ana M. Dyson, M. Adam Sloan, Jeremy Wilson, Neil R. O’Reilly, Rachel K. Dove, Andrew P. |
description | Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly(
L
-lactide) and poly(
D
-lactide) has led to improved properties compared with each homochiral material. Herein, we report the preparation of stereocomplex micelles from a mixture of poly(
L
-lactide)-
b
-poly(acrylic acid) and poly(
D
-lactide)-
b
-poly(acrylic acid) diblock copolymers in water
via
crystallization-driven self-assembly. During the formation of these stereocomplex micelles, an unexpected morphological transition results in the formation of dense crystalline spherical micelles rather than cylinders. Furthermore, mixture of cylinders with opposite homochirality in either THF/H
2
O mixtures or in pure water at 65 °C leads to disassembly into stereocomplexed spherical micelles. Similarly, a transition is also observed in a related PEO-
b
-PLLA/PEO-
b
-PDLA system, demonstrating wider applicability. This new mechanism for morphological reorganization, through competitive crystallization and stereocomplexation and without the requirement for an external stimulus, allows for new opportunities in controlled release and delivery applications.
A polymer stereocomplex can possess quite different properties to its constituent homopolymers. Here, the authors prepare stereocomplex micelles of amphiphilic block-copolymers via crystallization-driven self-assembly, and observe a change from cylindrical to mixed spherical micelle morphology. |
doi_str_mv | 10.1038/ncomms6746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3529100241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-4238738f614948873185e41916b661ecf12da54b3b109226a1fc7150f2599c373</originalsourceid><addsrcrecordid>eNplUUtLxDAYDKLosnrxB0jBm7LaL6-2F0EWXyB4UM8hTdM1SzepSSquv97o-lgxl3x8M8xMMgjtQ34COSlPrXKLReAF5RtohHMKEygw2Vybd9BeCPM8HVJBSek22sGMQcEoHaH6PvpBxcHLLvPa-Zm05k1G42zm2kwtO2Mbb1RCrbSulz4a1emQRW9mM-11k9XLrHfdspMqmkZnIaatS6H6Tr9-Cu2irVZ2Qe993WP0eHnxML2e3N5d3UzPbyeKFixOKCZlQcqWA61omUYomaZQAa85B61awI1ktCY15BXGXEKrCmB5i1lVKVKQMTpb6fZDvdCN0jamV4nem4X0S-GkEX8Ra57EzL0IikvglCeBwy8B754HHaKYu8HblFkAJ7xiNPkm1tGKpbwLwev2xwFy8VGJ-K0kkQ_WM_1QvwtIhOMVISTIph9d8_wv9w6zN5ku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636954922</pqid></control><display><type>article</type><title>Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation</title><source>SpringerOpen</source><source>MEDLINE</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Sun, Liang ; Pitto-Barry, Anaïs ; Kirby, Nigel ; Schiller, Tara L. ; Sanchez, Ana M. ; Dyson, M. Adam ; Sloan, Jeremy ; Wilson, Neil R. ; O’Reilly, Rachel K. ; Dove, Andrew P.</creator><creatorcontrib>Sun, Liang ; Pitto-Barry, Anaïs ; Kirby, Nigel ; Schiller, Tara L. ; Sanchez, Ana M. ; Dyson, M. Adam ; Sloan, Jeremy ; Wilson, Neil R. ; O’Reilly, Rachel K. ; Dove, Andrew P.</creatorcontrib><description>Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly(
L
-lactide) and poly(
D
-lactide) has led to improved properties compared with each homochiral material. Herein, we report the preparation of stereocomplex micelles from a mixture of poly(
L
-lactide)-
b
-poly(acrylic acid) and poly(
D
-lactide)-
b
-poly(acrylic acid) diblock copolymers in water
via
crystallization-driven self-assembly. During the formation of these stereocomplex micelles, an unexpected morphological transition results in the formation of dense crystalline spherical micelles rather than cylinders. Furthermore, mixture of cylinders with opposite homochirality in either THF/H
2
O mixtures or in pure water at 65 °C leads to disassembly into stereocomplexed spherical micelles. Similarly, a transition is also observed in a related PEO-
b
-PLLA/PEO-
b
-PDLA system, demonstrating wider applicability. This new mechanism for morphological reorganization, through competitive crystallization and stereocomplexation and without the requirement for an external stimulus, allows for new opportunities in controlled release and delivery applications.
A polymer stereocomplex can possess quite different properties to its constituent homopolymers. Here, the authors prepare stereocomplex micelles of amphiphilic block-copolymers via crystallization-driven self-assembly, and observe a change from cylindrical to mixed spherical micelle morphology.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6746</identifier><identifier>PMID: 25517544</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 639/301/54/990 ; 639/925/352 ; Biocompatible Materials - chemistry ; Crystallization ; Delayed-Action Preparations ; Furans - chemistry ; Humanities and Social Sciences ; Micelles ; Microscopy, Electron, Transmission ; multidisciplinary ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Polyesters - chemistry ; Science ; Science (multidisciplinary) ; Stereoisomerism ; Temperature ; Water - chemistry</subject><ispartof>Nature communications, 2014-12, Vol.5 (1), p.5746, Article 5746</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Dec 2014</rights><rights>Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-4238738f614948873185e41916b661ecf12da54b3b109226a1fc7150f2599c373</citedby><cites>FETCH-LOGICAL-c475t-4238738f614948873185e41916b661ecf12da54b3b109226a1fc7150f2599c373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281646/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281646/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25517544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Pitto-Barry, Anaïs</creatorcontrib><creatorcontrib>Kirby, Nigel</creatorcontrib><creatorcontrib>Schiller, Tara L.</creatorcontrib><creatorcontrib>Sanchez, Ana M.</creatorcontrib><creatorcontrib>Dyson, M. Adam</creatorcontrib><creatorcontrib>Sloan, Jeremy</creatorcontrib><creatorcontrib>Wilson, Neil R.</creatorcontrib><creatorcontrib>O’Reilly, Rachel K.</creatorcontrib><creatorcontrib>Dove, Andrew P.</creatorcontrib><title>Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly(
L
-lactide) and poly(
D
-lactide) has led to improved properties compared with each homochiral material. Herein, we report the preparation of stereocomplex micelles from a mixture of poly(
L
-lactide)-
b
-poly(acrylic acid) and poly(
D
-lactide)-
b
-poly(acrylic acid) diblock copolymers in water
via
crystallization-driven self-assembly. During the formation of these stereocomplex micelles, an unexpected morphological transition results in the formation of dense crystalline spherical micelles rather than cylinders. Furthermore, mixture of cylinders with opposite homochirality in either THF/H
2
O mixtures or in pure water at 65 °C leads to disassembly into stereocomplexed spherical micelles. Similarly, a transition is also observed in a related PEO-
b
-PLLA/PEO-
b
-PDLA system, demonstrating wider applicability. This new mechanism for morphological reorganization, through competitive crystallization and stereocomplexation and without the requirement for an external stimulus, allows for new opportunities in controlled release and delivery applications.
A polymer stereocomplex can possess quite different properties to its constituent homopolymers. Here, the authors prepare stereocomplex micelles of amphiphilic block-copolymers via crystallization-driven self-assembly, and observe a change from cylindrical to mixed spherical micelle morphology.</description><subject>140/131</subject><subject>639/301/54/990</subject><subject>639/925/352</subject><subject>Biocompatible Materials - chemistry</subject><subject>Crystallization</subject><subject>Delayed-Action Preparations</subject><subject>Furans - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Micelles</subject><subject>Microscopy, Electron, Transmission</subject><subject>multidisciplinary</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Polyesters - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stereoisomerism</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplUUtLxDAYDKLosnrxB0jBm7LaL6-2F0EWXyB4UM8hTdM1SzepSSquv97o-lgxl3x8M8xMMgjtQ34COSlPrXKLReAF5RtohHMKEygw2Vybd9BeCPM8HVJBSek22sGMQcEoHaH6PvpBxcHLLvPa-Zm05k1G42zm2kwtO2Mbb1RCrbSulz4a1emQRW9mM-11k9XLrHfdspMqmkZnIaatS6H6Tr9-Cu2irVZ2Qe993WP0eHnxML2e3N5d3UzPbyeKFixOKCZlQcqWA61omUYomaZQAa85B61awI1ktCY15BXGXEKrCmB5i1lVKVKQMTpb6fZDvdCN0jamV4nem4X0S-GkEX8Ra57EzL0IikvglCeBwy8B754HHaKYu8HblFkAJ7xiNPkm1tGKpbwLwev2xwFy8VGJ-K0kkQ_WM_1QvwtIhOMVISTIph9d8_wv9w6zN5ku</recordid><startdate>20141217</startdate><enddate>20141217</enddate><creator>Sun, Liang</creator><creator>Pitto-Barry, Anaïs</creator><creator>Kirby, Nigel</creator><creator>Schiller, Tara L.</creator><creator>Sanchez, Ana M.</creator><creator>Dyson, M. Adam</creator><creator>Sloan, Jeremy</creator><creator>Wilson, Neil R.</creator><creator>O’Reilly, Rachel K.</creator><creator>Dove, Andrew P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20141217</creationdate><title>Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation</title><author>Sun, Liang ; Pitto-Barry, Anaïs ; Kirby, Nigel ; Schiller, Tara L. ; Sanchez, Ana M. ; Dyson, M. Adam ; Sloan, Jeremy ; Wilson, Neil R. ; O’Reilly, Rachel K. ; Dove, Andrew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-4238738f614948873185e41916b661ecf12da54b3b109226a1fc7150f2599c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/131</topic><topic>639/301/54/990</topic><topic>639/925/352</topic><topic>Biocompatible Materials - chemistry</topic><topic>Crystallization</topic><topic>Delayed-Action Preparations</topic><topic>Furans - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Micelles</topic><topic>Microscopy, Electron, Transmission</topic><topic>multidisciplinary</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Polyesters - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stereoisomerism</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Pitto-Barry, Anaïs</creatorcontrib><creatorcontrib>Kirby, Nigel</creatorcontrib><creatorcontrib>Schiller, Tara L.</creatorcontrib><creatorcontrib>Sanchez, Ana M.</creatorcontrib><creatorcontrib>Dyson, M. Adam</creatorcontrib><creatorcontrib>Sloan, Jeremy</creatorcontrib><creatorcontrib>Wilson, Neil R.</creatorcontrib><creatorcontrib>O’Reilly, Rachel K.</creatorcontrib><creatorcontrib>Dove, Andrew P.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Liang</au><au>Pitto-Barry, Anaïs</au><au>Kirby, Nigel</au><au>Schiller, Tara L.</au><au>Sanchez, Ana M.</au><au>Dyson, M. Adam</au><au>Sloan, Jeremy</au><au>Wilson, Neil R.</au><au>O’Reilly, Rachel K.</au><au>Dove, Andrew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-12-17</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5746</spage><pages>5746-</pages><artnum>5746</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly(
L
-lactide) and poly(
D
-lactide) has led to improved properties compared with each homochiral material. Herein, we report the preparation of stereocomplex micelles from a mixture of poly(
L
-lactide)-
b
-poly(acrylic acid) and poly(
D
-lactide)-
b
-poly(acrylic acid) diblock copolymers in water
via
crystallization-driven self-assembly. During the formation of these stereocomplex micelles, an unexpected morphological transition results in the formation of dense crystalline spherical micelles rather than cylinders. Furthermore, mixture of cylinders with opposite homochirality in either THF/H
2
O mixtures or in pure water at 65 °C leads to disassembly into stereocomplexed spherical micelles. Similarly, a transition is also observed in a related PEO-
b
-PLLA/PEO-
b
-PDLA system, demonstrating wider applicability. This new mechanism for morphological reorganization, through competitive crystallization and stereocomplexation and without the requirement for an external stimulus, allows for new opportunities in controlled release and delivery applications.
A polymer stereocomplex can possess quite different properties to its constituent homopolymers. Here, the authors prepare stereocomplex micelles of amphiphilic block-copolymers via crystallization-driven self-assembly, and observe a change from cylindrical to mixed spherical micelle morphology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25517544</pmid><doi>10.1038/ncomms6746</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-12, Vol.5 (1), p.5746, Article 5746 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281646 |
source | SpringerOpen; MEDLINE; Nature Free; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | 140/131 639/301/54/990 639/925/352 Biocompatible Materials - chemistry Crystallization Delayed-Action Preparations Furans - chemistry Humanities and Social Sciences Micelles Microscopy, Electron, Transmission multidisciplinary Nanoparticles - chemistry Nanoparticles - ultrastructure Polyesters - chemistry Science Science (multidisciplinary) Stereoisomerism Temperature Water - chemistry |
title | Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20reorganization%20of%20cylindrical%20nanoparticles%20triggered%20by%20polylactide%20stereocomplexation&rft.jtitle=Nature%20communications&rft.au=Sun,%20Liang&rft.date=2014-12-17&rft.volume=5&rft.issue=1&rft.spage=5746&rft.pages=5746-&rft.artnum=5746&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6746&rft_dat=%3Cproquest_pubme%3E3529100241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636954922&rft_id=info:pmid/25517544&rfr_iscdi=true |