Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation

Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single-synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2014-04, Vol.82 (2), p.444-459
Hauptverfasser: Bosch, Miquel, Castro, Jorge, Saneyoshi, Takeo, Matsuno, Hitomi, Sur, Mriganka, Hayashi, Yasunori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 2
container_start_page 444
container_title Neuron (Cambridge, Mass.)
container_volume 82
creator Bosch, Miquel
Castro, Jorge
Saneyoshi, Takeo
Matsuno, Hitomi
Sur, Mriganka
Hayashi, Yasunori
description Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single-synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time. •Postsynaptic proteins are reorganized during LTP in three sequential phases•Cofilin is rapidly, persistently enriched in the spine via a stable F-actin complex•Cofilin signaling pathway is necessary for the maintenance of spine expansion•Delayed PSD growth is spine expansion independent but protein synthesis dependent Bosch et al. describe the spatiotemporal reorganization of postsynaptic substructures during potentiation at single dendritic spines. They uncover the late-phase growth of the postsynaptic density and the unique dynamics of cofilin, which play a critical role in consolidating spine growth.
doi_str_mv 10.1016/j.neuron.2014.03.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627314002517</els_id><sourcerecordid>1555017666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-5620ccc64066df4bca34655c5a9a337aa17c99ad23ebf44b580e9bf5106011c83</originalsourceid><addsrcrecordid>eNqNkUuP1DAQhC0EYoeFf4BQJC5cEuz4FV-Q0PKUBoGY5Ww5TmfwKLEHO16Jf4-jGZbHAXHyob8uV1ch9JjghmAinh8aDzkG37SYsAbTBrfkDtoQrGTNiFJ30QZ3StSilfQCPUjpgAvIFbmPLlomWcsE36B-t8RslxzNVBk_VB_CBDZPJlafYQ4DTM7vqzBWr8AP0S3OVruj81Dtcp_Om5CqIceV2wa_r68hztWnsIBfnFlc8A_RvdFMCR6d30v05c3r66t39fbj2_dXL7e1FZQtNRctttYKhoUYRtZbQ4tDbrlRhlJpDJFWKTO0FPqRsZ53GFQ_coIFJsR29BK9OOkecz_DYIuBcpU-Rjeb-F0H4_SfE---6n240aztCGWrwLOzQAzfMqRFzy5ZmCbjIeSkCeccEymE-A-UyE5KRWRBn_6FHkKOviSxUh0hHZWqUOxE2RhSijDe-iZYr33rgz71rde-Naa69F3Wnvx-8-3Sz4J_hQIl-RsHUSfrwFsYXAS76CG4f__wA2Kkv3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518118379</pqid></control><display><type>article</type><title>Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bosch, Miquel ; Castro, Jorge ; Saneyoshi, Takeo ; Matsuno, Hitomi ; Sur, Mriganka ; Hayashi, Yasunori</creator><creatorcontrib>Bosch, Miquel ; Castro, Jorge ; Saneyoshi, Takeo ; Matsuno, Hitomi ; Sur, Mriganka ; Hayashi, Yasunori</creatorcontrib><description>Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single-synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time. •Postsynaptic proteins are reorganized during LTP in three sequential phases•Cofilin is rapidly, persistently enriched in the spine via a stable F-actin complex•Cofilin signaling pathway is necessary for the maintenance of spine expansion•Delayed PSD growth is spine expansion independent but protein synthesis dependent Bosch et al. describe the spatiotemporal reorganization of postsynaptic substructures during potentiation at single dendritic spines. They uncover the late-phase growth of the postsynaptic density and the unique dynamics of cofilin, which play a critical role in consolidating spine growth.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.03.021</identifier><identifier>PMID: 24742465</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Cells, Cultured ; Dendritic Spines - physiology ; Dendritic Spines - ultrastructure ; Experiments ; Glutamic Acid - pharmacology ; Hippocampus - cytology ; Humans ; Kinases ; Long-Term Potentiation - physiology ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Mice ; Models, Biological ; Nerve Tissue Proteins - metabolism ; Neurons ; Neurons - ultrastructure ; Organ Culture Techniques ; Post-Synaptic Density - metabolism ; Post-Synaptic Density - ultrastructure ; Proteins ; Rats ; Receptors, Neurotransmitter - metabolism ; Signal transduction ; Synapses - genetics ; Synapses - physiology ; Synapses - ultrastructure ; Transduction, Genetic</subject><ispartof>Neuron (Cambridge, Mass.), 2014-04, Vol.82 (2), p.444-459</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 16, 2014</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-5620ccc64066df4bca34655c5a9a337aa17c99ad23ebf44b580e9bf5106011c83</citedby><cites>FETCH-LOGICAL-c634t-5620ccc64066df4bca34655c5a9a337aa17c99ad23ebf44b580e9bf5106011c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627314002517$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24742465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bosch, Miquel</creatorcontrib><creatorcontrib>Castro, Jorge</creatorcontrib><creatorcontrib>Saneyoshi, Takeo</creatorcontrib><creatorcontrib>Matsuno, Hitomi</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><title>Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single-synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time. •Postsynaptic proteins are reorganized during LTP in three sequential phases•Cofilin is rapidly, persistently enriched in the spine via a stable F-actin complex•Cofilin signaling pathway is necessary for the maintenance of spine expansion•Delayed PSD growth is spine expansion independent but protein synthesis dependent Bosch et al. describe the spatiotemporal reorganization of postsynaptic substructures during potentiation at single dendritic spines. They uncover the late-phase growth of the postsynaptic density and the unique dynamics of cofilin, which play a critical role in consolidating spine growth.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cells, Cultured</subject><subject>Dendritic Spines - physiology</subject><subject>Dendritic Spines - ultrastructure</subject><subject>Experiments</subject><subject>Glutamic Acid - pharmacology</subject><subject>Hippocampus - cytology</subject><subject>Humans</subject><subject>Kinases</subject><subject>Long-Term Potentiation - physiology</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Neurons - ultrastructure</subject><subject>Organ Culture Techniques</subject><subject>Post-Synaptic Density - metabolism</subject><subject>Post-Synaptic Density - ultrastructure</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptors, Neurotransmitter - metabolism</subject><subject>Signal transduction</subject><subject>Synapses - genetics</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Transduction, Genetic</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuP1DAQhC0EYoeFf4BQJC5cEuz4FV-Q0PKUBoGY5Ww5TmfwKLEHO16Jf4-jGZbHAXHyob8uV1ch9JjghmAinh8aDzkG37SYsAbTBrfkDtoQrGTNiFJ30QZ3StSilfQCPUjpgAvIFbmPLlomWcsE36B-t8RslxzNVBk_VB_CBDZPJlafYQ4DTM7vqzBWr8AP0S3OVruj81Dtcp_Om5CqIceV2wa_r68hztWnsIBfnFlc8A_RvdFMCR6d30v05c3r66t39fbj2_dXL7e1FZQtNRctttYKhoUYRtZbQ4tDbrlRhlJpDJFWKTO0FPqRsZ53GFQ_coIFJsR29BK9OOkecz_DYIuBcpU-Rjeb-F0H4_SfE---6n240aztCGWrwLOzQAzfMqRFzy5ZmCbjIeSkCeccEymE-A-UyE5KRWRBn_6FHkKOviSxUh0hHZWqUOxE2RhSijDe-iZYr33rgz71rde-Naa69F3Wnvx-8-3Sz4J_hQIl-RsHUSfrwFsYXAS76CG4f__wA2Kkv3Q</recordid><startdate>20140416</startdate><enddate>20140416</enddate><creator>Bosch, Miquel</creator><creator>Castro, Jorge</creator><creator>Saneyoshi, Takeo</creator><creator>Matsuno, Hitomi</creator><creator>Sur, Mriganka</creator><creator>Hayashi, Yasunori</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140416</creationdate><title>Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation</title><author>Bosch, Miquel ; Castro, Jorge ; Saneyoshi, Takeo ; Matsuno, Hitomi ; Sur, Mriganka ; Hayashi, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-5620ccc64066df4bca34655c5a9a337aa17c99ad23ebf44b580e9bf5106011c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cells, Cultured</topic><topic>Dendritic Spines - physiology</topic><topic>Dendritic Spines - ultrastructure</topic><topic>Experiments</topic><topic>Glutamic Acid - pharmacology</topic><topic>Hippocampus - cytology</topic><topic>Humans</topic><topic>Kinases</topic><topic>Long-Term Potentiation - physiology</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Neurons - ultrastructure</topic><topic>Organ Culture Techniques</topic><topic>Post-Synaptic Density - metabolism</topic><topic>Post-Synaptic Density - ultrastructure</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptors, Neurotransmitter - metabolism</topic><topic>Signal transduction</topic><topic>Synapses - genetics</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosch, Miquel</creatorcontrib><creatorcontrib>Castro, Jorge</creatorcontrib><creatorcontrib>Saneyoshi, Takeo</creatorcontrib><creatorcontrib>Matsuno, Hitomi</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosch, Miquel</au><au>Castro, Jorge</au><au>Saneyoshi, Takeo</au><au>Matsuno, Hitomi</au><au>Sur, Mriganka</au><au>Hayashi, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-04-16</date><risdate>2014</risdate><volume>82</volume><issue>2</issue><spage>444</spage><epage>459</epage><pages>444-459</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single-synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time. •Postsynaptic proteins are reorganized during LTP in three sequential phases•Cofilin is rapidly, persistently enriched in the spine via a stable F-actin complex•Cofilin signaling pathway is necessary for the maintenance of spine expansion•Delayed PSD growth is spine expansion independent but protein synthesis dependent Bosch et al. describe the spatiotemporal reorganization of postsynaptic substructures during potentiation at single dendritic spines. They uncover the late-phase growth of the postsynaptic density and the unique dynamics of cofilin, which play a critical role in consolidating spine growth.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24742465</pmid><doi>10.1016/j.neuron.2014.03.021</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2014-04, Vol.82 (2), p.444-459
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281348
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Animals, Newborn
Cells, Cultured
Dendritic Spines - physiology
Dendritic Spines - ultrastructure
Experiments
Glutamic Acid - pharmacology
Hippocampus - cytology
Humans
Kinases
Long-Term Potentiation - physiology
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Mice
Models, Biological
Nerve Tissue Proteins - metabolism
Neurons
Neurons - ultrastructure
Organ Culture Techniques
Post-Synaptic Density - metabolism
Post-Synaptic Density - ultrastructure
Proteins
Rats
Receptors, Neurotransmitter - metabolism
Signal transduction
Synapses - genetics
Synapses - physiology
Synapses - ultrastructure
Transduction, Genetic
title Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Molecular%20Remodeling%20of%20Dendritic%20Spine%20Substructures%20during%20Long-Term%20Potentiation&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Bosch,%20Miquel&rft.date=2014-04-16&rft.volume=82&rft.issue=2&rft.spage=444&rft.epage=459&rft.pages=444-459&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.03.021&rft_dat=%3Cproquest_pubme%3E1555017666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518118379&rft_id=info:pmid/24742465&rft_els_id=S0896627314002517&rfr_iscdi=true