A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α

The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-12, Vol.289 (52), p.36284-36302
Hauptverfasser: Chen, Shu-jen, Hoffman, Nicholas E., Shanmughapriya, Santhanam, Bao, Lei, Keefer, Kerry, Conrad, Kathleen, Merali, Salim, Takahashi, Yoshinori, Abraham, Thomas, Hirschler-Laszkiewicz, Iwona, Wang, JuFang, Zhang, Xue-Qian, Song, Jianliang, Barrero, Carlos, Shi, Yuguang, Kawasawa, Yuka Imamura, Bayerl, Michael, Sun, Tianyu, Barbour, Mustafa, Wang, Hong-Gang, Madesh, Muniswamy, Cheung, Joseph Y., Miller, Barbara A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36302
container_issue 52
container_start_page 36284
container_title The Journal of biological chemistry
container_volume 289
creator Chen, Shu-jen
Hoffman, Nicholas E.
Shanmughapriya, Santhanam
Bao, Lei
Keefer, Kerry
Conrad, Kathleen
Merali, Salim
Takahashi, Yoshinori
Abraham, Thomas
Hirschler-Laszkiewicz, Iwona
Wang, JuFang
Zhang, Xue-Qian
Song, Jianliang
Barrero, Carlos
Shi, Yuguang
Kawasawa, Yuka Imamura
Bayerl, Michael
Sun, Tianyu
Barbour, Mustafa
Wang, Hong-Gang
Madesh, Muniswamy
Cheung, Joseph Y.
Miller, Barbara A.
description The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.TRPM2 channels play an essential role in cell death following oxidative stress. Dominant negative TRPM2-S decreases growth of neuroblastoma xenografts and increases doxorubicin sensitivity through modulation of HIF-1/2α expression, mitophagy, and mitochondrial function. TRPM2 is important for neuroblastoma growth and viability through modulation of HIF-1/2α. Modulation of TRPM2 may be a novel approach in cancer therapeutics.
doi_str_mv 10.1074/jbc.M114.620922
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4276889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820580150</els_id><sourcerecordid>1640851329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-648437064682c58890354f61d19ced46f4e7ad5e8abeb845c7c106965e2f95193</originalsourceid><addsrcrecordid>eNp1kUFv0zAUxyMEYmVw5oZ8HIe0tmM78QVpquhaaQUEBXGzHOdl8ZTYnZ0MduQj8UX4TLjqmOCAL-_g3_u9Z_-z7CXBc4JLtriuzXxLCJsLiiWlj7IZwVWRF5x8fZzNMKYkl5RXJ9mzGK9xOkySp9kJ5YUkgpez7Mc5-rTvrQH0RQer3Yh8i8YO0HoatEMb79Cy085Bj3YfP2wp2vpm6vUIEb2DKfi613H0g0a7afABXQT_beySIPjpqkPru73_bnVuXTMZW_eAVtqMiTtbb1avc7Kgv34-z560uo_w4r6eZp9Xb3fLdX75_mKzPL_MDavkmAtWsaLEgomKGl5VEhectYI0RBpomGgZlLrhUOka6opxUxqChRQcaCs5kcVp9ubo3U_1AI0BNwbdq32wgw53ymur_r1xtlNX_lYxWoo0LwnO7gXB30wQRzXYaKDvtQM_RUUEwxUnBT2giyNqgo8xQPswhmB1CE6l4NQhOHUMLnW8-nu7B_5PUgmQRwDSH91aCCoaCy693QYwo2q8_a_8NxKsqA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640851329</pqid></control><display><type>article</type><title>A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Shu-jen ; Hoffman, Nicholas E. ; Shanmughapriya, Santhanam ; Bao, Lei ; Keefer, Kerry ; Conrad, Kathleen ; Merali, Salim ; Takahashi, Yoshinori ; Abraham, Thomas ; Hirschler-Laszkiewicz, Iwona ; Wang, JuFang ; Zhang, Xue-Qian ; Song, Jianliang ; Barrero, Carlos ; Shi, Yuguang ; Kawasawa, Yuka Imamura ; Bayerl, Michael ; Sun, Tianyu ; Barbour, Mustafa ; Wang, Hong-Gang ; Madesh, Muniswamy ; Cheung, Joseph Y. ; Miller, Barbara A.</creator><creatorcontrib>Chen, Shu-jen ; Hoffman, Nicholas E. ; Shanmughapriya, Santhanam ; Bao, Lei ; Keefer, Kerry ; Conrad, Kathleen ; Merali, Salim ; Takahashi, Yoshinori ; Abraham, Thomas ; Hirschler-Laszkiewicz, Iwona ; Wang, JuFang ; Zhang, Xue-Qian ; Song, Jianliang ; Barrero, Carlos ; Shi, Yuguang ; Kawasawa, Yuka Imamura ; Bayerl, Michael ; Sun, Tianyu ; Barbour, Mustafa ; Wang, Hong-Gang ; Madesh, Muniswamy ; Cheung, Joseph Y. ; Miller, Barbara A.</creatorcontrib><description>The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.TRPM2 channels play an essential role in cell death following oxidative stress. Dominant negative TRPM2-S decreases growth of neuroblastoma xenografts and increases doxorubicin sensitivity through modulation of HIF-1/2α expression, mitophagy, and mitochondrial function. TRPM2 is important for neuroblastoma growth and viability through modulation of HIF-1/2α. Modulation of TRPM2 may be a novel approach in cancer therapeutics.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.620922</identifier><identifier>PMID: 25391657</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adrenal Glands - metabolism ; Animals ; Antibiotics, Antineoplastic - pharmacology ; Autophagy ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival - drug effects ; Down-Regulation ; Doxorubicin - pharmacology ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Hypoxia-inducible Factor (HIF) ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Membrane Potential, Mitochondrial ; Membrane Potentials ; Mice, Nude ; Mitochondria ; Mitophagy ; Neoplasm Transplantation ; Neuroblastoma ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; Oxidative Stress ; Protein Isoforms - physiology ; Protein Transport ; Signal Transduction ; TRP ; TRPM ; TRPM Cation Channels - physiology ; Tumor Burden</subject><ispartof>The Journal of biological chemistry, 2014-12, Vol.289 (52), p.36284-36302</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-648437064682c58890354f61d19ced46f4e7ad5e8abeb845c7c106965e2f95193</citedby><cites>FETCH-LOGICAL-c489t-648437064682c58890354f61d19ced46f4e7ad5e8abeb845c7c106965e2f95193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276889/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276889/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25391657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shu-jen</creatorcontrib><creatorcontrib>Hoffman, Nicholas E.</creatorcontrib><creatorcontrib>Shanmughapriya, Santhanam</creatorcontrib><creatorcontrib>Bao, Lei</creatorcontrib><creatorcontrib>Keefer, Kerry</creatorcontrib><creatorcontrib>Conrad, Kathleen</creatorcontrib><creatorcontrib>Merali, Salim</creatorcontrib><creatorcontrib>Takahashi, Yoshinori</creatorcontrib><creatorcontrib>Abraham, Thomas</creatorcontrib><creatorcontrib>Hirschler-Laszkiewicz, Iwona</creatorcontrib><creatorcontrib>Wang, JuFang</creatorcontrib><creatorcontrib>Zhang, Xue-Qian</creatorcontrib><creatorcontrib>Song, Jianliang</creatorcontrib><creatorcontrib>Barrero, Carlos</creatorcontrib><creatorcontrib>Shi, Yuguang</creatorcontrib><creatorcontrib>Kawasawa, Yuka Imamura</creatorcontrib><creatorcontrib>Bayerl, Michael</creatorcontrib><creatorcontrib>Sun, Tianyu</creatorcontrib><creatorcontrib>Barbour, Mustafa</creatorcontrib><creatorcontrib>Wang, Hong-Gang</creatorcontrib><creatorcontrib>Madesh, Muniswamy</creatorcontrib><creatorcontrib>Cheung, Joseph Y.</creatorcontrib><creatorcontrib>Miller, Barbara A.</creatorcontrib><title>A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.TRPM2 channels play an essential role in cell death following oxidative stress. Dominant negative TRPM2-S decreases growth of neuroblastoma xenografts and increases doxorubicin sensitivity through modulation of HIF-1/2α expression, mitophagy, and mitochondrial function. TRPM2 is important for neuroblastoma growth and viability through modulation of HIF-1/2α. Modulation of TRPM2 may be a novel approach in cancer therapeutics.</description><subject>Adrenal Glands - metabolism</subject><subject>Animals</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Autophagy</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Survival - drug effects</subject><subject>Down-Regulation</subject><subject>Doxorubicin - pharmacology</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Hypoxia-inducible Factor (HIF)</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Membrane Potentials</subject><subject>Mice, Nude</subject><subject>Mitochondria</subject><subject>Mitophagy</subject><subject>Neoplasm Transplantation</subject><subject>Neuroblastoma</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Oxidative Stress</subject><subject>Protein Isoforms - physiology</subject><subject>Protein Transport</subject><subject>Signal Transduction</subject><subject>TRP</subject><subject>TRPM</subject><subject>TRPM Cation Channels - physiology</subject><subject>Tumor Burden</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFv0zAUxyMEYmVw5oZ8HIe0tmM78QVpquhaaQUEBXGzHOdl8ZTYnZ0MduQj8UX4TLjqmOCAL-_g3_u9Z_-z7CXBc4JLtriuzXxLCJsLiiWlj7IZwVWRF5x8fZzNMKYkl5RXJ9mzGK9xOkySp9kJ5YUkgpez7Mc5-rTvrQH0RQer3Yh8i8YO0HoatEMb79Cy085Bj3YfP2wp2vpm6vUIEb2DKfi613H0g0a7afABXQT_beySIPjpqkPru73_bnVuXTMZW_eAVtqMiTtbb1avc7Kgv34-z560uo_w4r6eZp9Xb3fLdX75_mKzPL_MDavkmAtWsaLEgomKGl5VEhectYI0RBpomGgZlLrhUOka6opxUxqChRQcaCs5kcVp9ubo3U_1AI0BNwbdq32wgw53ymur_r1xtlNX_lYxWoo0LwnO7gXB30wQRzXYaKDvtQM_RUUEwxUnBT2giyNqgo8xQPswhmB1CE6l4NQhOHUMLnW8-nu7B_5PUgmQRwDSH91aCCoaCy693QYwo2q8_a_8NxKsqA4</recordid><startdate>20141226</startdate><enddate>20141226</enddate><creator>Chen, Shu-jen</creator><creator>Hoffman, Nicholas E.</creator><creator>Shanmughapriya, Santhanam</creator><creator>Bao, Lei</creator><creator>Keefer, Kerry</creator><creator>Conrad, Kathleen</creator><creator>Merali, Salim</creator><creator>Takahashi, Yoshinori</creator><creator>Abraham, Thomas</creator><creator>Hirschler-Laszkiewicz, Iwona</creator><creator>Wang, JuFang</creator><creator>Zhang, Xue-Qian</creator><creator>Song, Jianliang</creator><creator>Barrero, Carlos</creator><creator>Shi, Yuguang</creator><creator>Kawasawa, Yuka Imamura</creator><creator>Bayerl, Michael</creator><creator>Sun, Tianyu</creator><creator>Barbour, Mustafa</creator><creator>Wang, Hong-Gang</creator><creator>Madesh, Muniswamy</creator><creator>Cheung, Joseph Y.</creator><creator>Miller, Barbara A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141226</creationdate><title>A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α</title><author>Chen, Shu-jen ; Hoffman, Nicholas E. ; Shanmughapriya, Santhanam ; Bao, Lei ; Keefer, Kerry ; Conrad, Kathleen ; Merali, Salim ; Takahashi, Yoshinori ; Abraham, Thomas ; Hirschler-Laszkiewicz, Iwona ; Wang, JuFang ; Zhang, Xue-Qian ; Song, Jianliang ; Barrero, Carlos ; Shi, Yuguang ; Kawasawa, Yuka Imamura ; Bayerl, Michael ; Sun, Tianyu ; Barbour, Mustafa ; Wang, Hong-Gang ; Madesh, Muniswamy ; Cheung, Joseph Y. ; Miller, Barbara A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-648437064682c58890354f61d19ced46f4e7ad5e8abeb845c7c106965e2f95193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adrenal Glands - metabolism</topic><topic>Animals</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Autophagy</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Survival - drug effects</topic><topic>Down-Regulation</topic><topic>Doxorubicin - pharmacology</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Hypoxia-inducible Factor (HIF)</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Membrane Potentials</topic><topic>Mice, Nude</topic><topic>Mitochondria</topic><topic>Mitophagy</topic><topic>Neoplasm Transplantation</topic><topic>Neuroblastoma</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Oxidative Stress</topic><topic>Protein Isoforms - physiology</topic><topic>Protein Transport</topic><topic>Signal Transduction</topic><topic>TRP</topic><topic>TRPM</topic><topic>TRPM Cation Channels - physiology</topic><topic>Tumor Burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shu-jen</creatorcontrib><creatorcontrib>Hoffman, Nicholas E.</creatorcontrib><creatorcontrib>Shanmughapriya, Santhanam</creatorcontrib><creatorcontrib>Bao, Lei</creatorcontrib><creatorcontrib>Keefer, Kerry</creatorcontrib><creatorcontrib>Conrad, Kathleen</creatorcontrib><creatorcontrib>Merali, Salim</creatorcontrib><creatorcontrib>Takahashi, Yoshinori</creatorcontrib><creatorcontrib>Abraham, Thomas</creatorcontrib><creatorcontrib>Hirschler-Laszkiewicz, Iwona</creatorcontrib><creatorcontrib>Wang, JuFang</creatorcontrib><creatorcontrib>Zhang, Xue-Qian</creatorcontrib><creatorcontrib>Song, Jianliang</creatorcontrib><creatorcontrib>Barrero, Carlos</creatorcontrib><creatorcontrib>Shi, Yuguang</creatorcontrib><creatorcontrib>Kawasawa, Yuka Imamura</creatorcontrib><creatorcontrib>Bayerl, Michael</creatorcontrib><creatorcontrib>Sun, Tianyu</creatorcontrib><creatorcontrib>Barbour, Mustafa</creatorcontrib><creatorcontrib>Wang, Hong-Gang</creatorcontrib><creatorcontrib>Madesh, Muniswamy</creatorcontrib><creatorcontrib>Cheung, Joseph Y.</creatorcontrib><creatorcontrib>Miller, Barbara A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shu-jen</au><au>Hoffman, Nicholas E.</au><au>Shanmughapriya, Santhanam</au><au>Bao, Lei</au><au>Keefer, Kerry</au><au>Conrad, Kathleen</au><au>Merali, Salim</au><au>Takahashi, Yoshinori</au><au>Abraham, Thomas</au><au>Hirschler-Laszkiewicz, Iwona</au><au>Wang, JuFang</au><au>Zhang, Xue-Qian</au><au>Song, Jianliang</au><au>Barrero, Carlos</au><au>Shi, Yuguang</au><au>Kawasawa, Yuka Imamura</au><au>Bayerl, Michael</au><au>Sun, Tianyu</au><au>Barbour, Mustafa</au><au>Wang, Hong-Gang</au><au>Madesh, Muniswamy</au><au>Cheung, Joseph Y.</au><au>Miller, Barbara A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-12-26</date><risdate>2014</risdate><volume>289</volume><issue>52</issue><spage>36284</spage><epage>36302</epage><pages>36284-36302</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.TRPM2 channels play an essential role in cell death following oxidative stress. Dominant negative TRPM2-S decreases growth of neuroblastoma xenografts and increases doxorubicin sensitivity through modulation of HIF-1/2α expression, mitophagy, and mitochondrial function. TRPM2 is important for neuroblastoma growth and viability through modulation of HIF-1/2α. Modulation of TRPM2 may be a novel approach in cancer therapeutics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25391657</pmid><doi>10.1074/jbc.M114.620922</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-12, Vol.289 (52), p.36284-36302
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4276889
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adrenal Glands - metabolism
Animals
Antibiotics, Antineoplastic - pharmacology
Autophagy
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Cell Line, Tumor
Cell Proliferation
Cell Survival - drug effects
Down-Regulation
Doxorubicin - pharmacology
Female
Gene Expression Regulation, Neoplastic
Humans
Hypoxia-inducible Factor (HIF)
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Membrane Potential, Mitochondrial
Membrane Potentials
Mice, Nude
Mitochondria
Mitophagy
Neoplasm Transplantation
Neuroblastoma
Neuroblastoma - metabolism
Neuroblastoma - pathology
Oxidative Stress
Protein Isoforms - physiology
Protein Transport
Signal Transduction
TRP
TRPM
TRPM Cation Channels - physiology
Tumor Burden
title A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Splice%20Variant%20of%20the%20Human%20Ion%20Channel%20TRPM2%20Modulates%20Neuroblastoma%20Tumor%20Growth%20through%20Hypoxia-inducible%20Factor%20(HIF)-1/2%CE%B1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Chen,%20Shu-jen&rft.date=2014-12-26&rft.volume=289&rft.issue=52&rft.spage=36284&rft.epage=36302&rft.pages=36284-36302&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.620922&rft_dat=%3Cproquest_pubme%3E1640851329%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1640851329&rft_id=info:pmid/25391657&rft_els_id=S0021925820580150&rfr_iscdi=true