An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves

In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2015-02, Vol.284, p.1005-1053
Hauptverfasser: Kamensky, David, Hsu, Ming-Chen, Schillinger, Dominik, Evans, John A., Aggarwal, Ankush, Bazilevs, Yuri, Sacks, Michael S., Hughes, Thomas J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue
container_start_page 1005
container_title Computer methods in applied mechanics and engineering
container_volume 284
creator Kamensky, David
Hsu, Ming-Chen
Schillinger, Dominik
Evans, John A.
Aggarwal, Ankush
Bazilevs, Yuri
Sacks, Michael S.
Hughes, Thomas J.R.
description In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.
doi_str_mv 10.1016/j.cma.2014.10.040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4274080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782514004101</els_id><sourcerecordid>1685821969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhAbigHLlksZ3YcUBCWlUUkCpxgbPldcZdL0kcxk4QN96BN-RJ6rClggv4Yo39_b9m5ifkKaNbRpl8cdzawWw5ZXWut7Sm98iGqaYtOavUfbKhtBZlo7g4I49iPNJ8FOMPyRkXomZCyg1ZdmPhhwEwhmsIAyT0tlgMepN8GE1fODQDfA34uXABC9fPvvv5_UdMONs0IxR-TIDGrvTLYjdNvbe_pEUKxd6HCUNMB0jZ9QAGU_buF4iPyQNn-ghPbu9z8unyzceLd-XVh7fvL3ZXpRWCptJyoK5pjOus6pysuam6itJcM6DAreWmbcVetKauWilFBcruXcW7qlknpdU5eX3yneb9AJ2FMaHp9YR-MPhNB-P13z-jP-jrsOiaNzVVq8HzWwMMX2aISQ8-Wuh7M0KYo2aKS0nbhjf_R6USirNWthllJ9Tm9UQEd9cRo3qNVh91jlav0a5POdqsefbnKHeK31lm4NUJgLzQxQPqaD2MFjqPYJPugv-H_Q3x_bmG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685821969</pqid></control><display><type>article</type><title>An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves</title><source>Elsevier ScienceDirect Journals</source><creator>Kamensky, David ; Hsu, Ming-Chen ; Schillinger, Dominik ; Evans, John A. ; Aggarwal, Ankush ; Bazilevs, Yuri ; Sacks, Michael S. ; Hughes, Thomas J.R.</creator><creatorcontrib>Kamensky, David ; Hsu, Ming-Chen ; Schillinger, Dominik ; Evans, John A. ; Aggarwal, Ankush ; Bazilevs, Yuri ; Sacks, Michael S. ; Hughes, Thomas J.R.</creatorcontrib><description>In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.10.040</identifier><identifier>PMID: 25541566</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bioprosthetic heart valve ; Computational fluid dynamics ; Computer simulation ; Discretization ; Fluid flow ; Fluid-structure interaction ; Fluids ; Heart valves ; Immersogeometric analysis ; Isogeometric analysis ; Mathematical analysis ; Mathematical models ; Nitsche’s method ; Weakly enforced boundary conditions</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-02, Vol.284, p.1005-1053</ispartof><rights>2014 Elsevier B.V.</rights><rights>2014 Elsevier B.V. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203</citedby><cites>FETCH-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203</cites><orcidid>0000-0002-1755-8807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782514004101$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25541566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamensky, David</creatorcontrib><creatorcontrib>Hsu, Ming-Chen</creatorcontrib><creatorcontrib>Schillinger, Dominik</creatorcontrib><creatorcontrib>Evans, John A.</creatorcontrib><creatorcontrib>Aggarwal, Ankush</creatorcontrib><creatorcontrib>Bazilevs, Yuri</creatorcontrib><creatorcontrib>Sacks, Michael S.</creatorcontrib><creatorcontrib>Hughes, Thomas J.R.</creatorcontrib><title>An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves</title><title>Computer methods in applied mechanics and engineering</title><addtitle>Comput Methods Appl Mech Eng</addtitle><description>In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.</description><subject>Bioprosthetic heart valve</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discretization</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Fluids</subject><subject>Heart valves</subject><subject>Immersogeometric analysis</subject><subject>Isogeometric analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nitsche’s method</subject><subject>Weakly enforced boundary conditions</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvhAbigHLlksZ3YcUBCWlUUkCpxgbPldcZdL0kcxk4QN96BN-RJ6rClggv4Yo39_b9m5ifkKaNbRpl8cdzawWw5ZXWut7Sm98iGqaYtOavUfbKhtBZlo7g4I49iPNJ8FOMPyRkXomZCyg1ZdmPhhwEwhmsIAyT0tlgMepN8GE1fODQDfA34uXABC9fPvvv5_UdMONs0IxR-TIDGrvTLYjdNvbe_pEUKxd6HCUNMB0jZ9QAGU_buF4iPyQNn-ghPbu9z8unyzceLd-XVh7fvL3ZXpRWCptJyoK5pjOus6pysuam6itJcM6DAreWmbcVetKauWilFBcruXcW7qlknpdU5eX3yneb9AJ2FMaHp9YR-MPhNB-P13z-jP-jrsOiaNzVVq8HzWwMMX2aISQ8-Wuh7M0KYo2aKS0nbhjf_R6USirNWthllJ9Tm9UQEd9cRo3qNVh91jlav0a5POdqsefbnKHeK31lm4NUJgLzQxQPqaD2MFjqPYJPugv-H_Q3x_bmG</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Kamensky, David</creator><creator>Hsu, Ming-Chen</creator><creator>Schillinger, Dominik</creator><creator>Evans, John A.</creator><creator>Aggarwal, Ankush</creator><creator>Bazilevs, Yuri</creator><creator>Sacks, Michael S.</creator><creator>Hughes, Thomas J.R.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1755-8807</orcidid></search><sort><creationdate>20150201</creationdate><title>An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves</title><author>Kamensky, David ; Hsu, Ming-Chen ; Schillinger, Dominik ; Evans, John A. ; Aggarwal, Ankush ; Bazilevs, Yuri ; Sacks, Michael S. ; Hughes, Thomas J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-c2e0f77afdc8df642a3d300afd1e0e2cc2a995b59a4396653e8cbf32d37081203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bioprosthetic heart valve</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discretization</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Fluids</topic><topic>Heart valves</topic><topic>Immersogeometric analysis</topic><topic>Isogeometric analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nitsche’s method</topic><topic>Weakly enforced boundary conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamensky, David</creatorcontrib><creatorcontrib>Hsu, Ming-Chen</creatorcontrib><creatorcontrib>Schillinger, Dominik</creatorcontrib><creatorcontrib>Evans, John A.</creatorcontrib><creatorcontrib>Aggarwal, Ankush</creatorcontrib><creatorcontrib>Bazilevs, Yuri</creatorcontrib><creatorcontrib>Sacks, Michael S.</creatorcontrib><creatorcontrib>Hughes, Thomas J.R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamensky, David</au><au>Hsu, Ming-Chen</au><au>Schillinger, Dominik</au><au>Evans, John A.</au><au>Aggarwal, Ankush</au><au>Bazilevs, Yuri</au><au>Sacks, Michael S.</au><au>Hughes, Thomas J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><addtitle>Comput Methods Appl Mech Eng</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>284</volume><spage>1005</spage><epage>1053</epage><pages>1005-1053</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25541566</pmid><doi>10.1016/j.cma.2014.10.040</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0002-1755-8807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2015-02, Vol.284, p.1005-1053
issn 0045-7825
1879-2138
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4274080
source Elsevier ScienceDirect Journals
subjects Bioprosthetic heart valve
Computational fluid dynamics
Computer simulation
Discretization
Fluid flow
Fluid-structure interaction
Fluids
Heart valves
Immersogeometric analysis
Isogeometric analysis
Mathematical analysis
Mathematical models
Nitsche’s method
Weakly enforced boundary conditions
title An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20immersogeometric%20variational%20framework%20for%20fluid%E2%80%93structure%20interaction:%20Application%20to%20bioprosthetic%20heart%20valves&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Kamensky,%20David&rft.date=2015-02-01&rft.volume=284&rft.spage=1005&rft.epage=1053&rft.pages=1005-1053&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.10.040&rft_dat=%3Cproquest_pubme%3E1685821969%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685821969&rft_id=info:pmid/25541566&rft_els_id=S0045782514004101&rfr_iscdi=true