DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence

Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2014-10, Vol.56 (2), p.275-285
Hauptverfasser: Sung, Myong-Hee, Guertin, Michael J., Baek, Songjoon, Hager, Gordon L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 2
container_start_page 275
container_title Molecular cell
container_volume 56
creator Sung, Myong-Hee
Guertin, Michael J.
Baek, Songjoon
Hager, Gordon L.
description Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach. [Display omitted] •Many factor-binding events detected by ChIP-seq do not produce DNase footprints•DNA cleavage signatures at these sites are present in the absence of the factor•The cleavage signatures are observed at the cognate binding site in naked DNA•Depth of footprint is related to the residence time for the factor in living cells “Footprints” in chromatin imply protein binding. Sung et al. show that the primary structure of DNA largely influences the nuclease cleavage profile within a footprint, and the footprint’s depth reflects how long a given protein binds DNA.
doi_str_mv 10.1016/j.molcel.2014.08.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4272573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276514006716</els_id><sourcerecordid>1622061198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-5af0b5463837e620cb994e4be53ae87b88990a28bb74ad211a5bc6e088d425c43</originalsourceid><addsrcrecordid>eNqNUcFuGyEQRVGjJk37B1XFsRdvgQUWLpGsuG6rRukh7RkBO06xdpcEcCT_fbHspuklyWlGw5s3j_cQek9JQwmVn9bNGAcPQ8MI5Q1RTR0eoVNKdDfjVPJXh551UpygNzmvSQUKpV-jEyYYZ5S3p-j74spmwMsYy20KU8HX4WayZZMg43kCvAi-2AI9dlu8tL7EhBfbyY7BZ2ynHi-u5vga7jYweXiLjld2yPDuUM_Qr-XnnxdfZ5c_vny7mF_OvNCizIRdESe4bFXbgWTEO605cAeitaA6p5TWxDLlXMdtzyi1wnkJRKmeM-F5e4bO97y3GzdC72EqyQ6m6h9t2ppog_n_ZQq_zU28N5x1THRtJfh4IEixSs_FjCFXKwc7Qdxkw0i1SknG6bPQajSTVDAtXgBljEhKtapQvof6FHNOsHoQT4nZpWvWZp-u2aVriDJ1WNc-PP74w9LfOP85A9X--wDJZB920fQhgS-mj-HpC38AAmy2lA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622061198</pqid></control><display><type>article</type><title>DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sung, Myong-Hee ; Guertin, Michael J. ; Baek, Songjoon ; Hager, Gordon L.</creator><creatorcontrib>Sung, Myong-Hee ; Guertin, Michael J. ; Baek, Songjoon ; Hager, Gordon L.</creatorcontrib><description>Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach. [Display omitted] •Many factor-binding events detected by ChIP-seq do not produce DNase footprints•DNA cleavage signatures at these sites are present in the absence of the factor•The cleavage signatures are observed at the cognate binding site in naked DNA•Depth of footprint is related to the residence time for the factor in living cells “Footprints” in chromatin imply protein binding. Sung et al. show that the primary structure of DNA largely influences the nuclease cleavage profile within a footprint, and the footprint’s depth reflects how long a given protein binds DNA.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2014.08.016</identifier><identifier>PMID: 25242143</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; binding sites ; Binding Sites - genetics ; chromatin ; Deoxyribonuclease I - chemistry ; deoxyribonucleases ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA Cleavage ; DNA Footprinting ; Endodeoxyribonucleases - chemistry ; Genomics ; Humans ; nucleotide sequences ; nucleotides ; Protein Binding - genetics ; Protein Structure, Tertiary ; ROC Curve ; Sequence Analysis, DNA ; transcription factors ; Transcription Factors - chemistry ; Transcription Factors - metabolism</subject><ispartof>Molecular cell, 2014-10, Vol.56 (2), p.275-285</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-5af0b5463837e620cb994e4be53ae87b88990a28bb74ad211a5bc6e088d425c43</citedby><cites>FETCH-LOGICAL-c595t-5af0b5463837e620cb994e4be53ae87b88990a28bb74ad211a5bc6e088d425c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276514006716$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25242143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sung, Myong-Hee</creatorcontrib><creatorcontrib>Guertin, Michael J.</creatorcontrib><creatorcontrib>Baek, Songjoon</creatorcontrib><creatorcontrib>Hager, Gordon L.</creatorcontrib><title>DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach. [Display omitted] •Many factor-binding events detected by ChIP-seq do not produce DNase footprints•DNA cleavage signatures at these sites are present in the absence of the factor•The cleavage signatures are observed at the cognate binding site in naked DNA•Depth of footprint is related to the residence time for the factor in living cells “Footprints” in chromatin imply protein binding. Sung et al. show that the primary structure of DNA largely influences the nuclease cleavage profile within a footprint, and the footprint’s depth reflects how long a given protein binds DNA.</description><subject>Base Sequence</subject><subject>binding sites</subject><subject>Binding Sites - genetics</subject><subject>chromatin</subject><subject>Deoxyribonuclease I - chemistry</subject><subject>deoxyribonucleases</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Cleavage</subject><subject>DNA Footprinting</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Genomics</subject><subject>Humans</subject><subject>nucleotide sequences</subject><subject>nucleotides</subject><subject>Protein Binding - genetics</subject><subject>Protein Structure, Tertiary</subject><subject>ROC Curve</subject><subject>Sequence Analysis, DNA</subject><subject>transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcFuGyEQRVGjJk37B1XFsRdvgQUWLpGsuG6rRukh7RkBO06xdpcEcCT_fbHspuklyWlGw5s3j_cQek9JQwmVn9bNGAcPQ8MI5Q1RTR0eoVNKdDfjVPJXh551UpygNzmvSQUKpV-jEyYYZ5S3p-j74spmwMsYy20KU8HX4WayZZMg43kCvAi-2AI9dlu8tL7EhBfbyY7BZ2ynHi-u5vga7jYweXiLjld2yPDuUM_Qr-XnnxdfZ5c_vny7mF_OvNCizIRdESe4bFXbgWTEO605cAeitaA6p5TWxDLlXMdtzyi1wnkJRKmeM-F5e4bO97y3GzdC72EqyQ6m6h9t2ppog_n_ZQq_zU28N5x1THRtJfh4IEixSs_FjCFXKwc7Qdxkw0i1SknG6bPQajSTVDAtXgBljEhKtapQvof6FHNOsHoQT4nZpWvWZp-u2aVriDJ1WNc-PP74w9LfOP85A9X--wDJZB920fQhgS-mj-HpC38AAmy2lA</recordid><startdate>20141023</startdate><enddate>20141023</enddate><creator>Sung, Myong-Hee</creator><creator>Guertin, Michael J.</creator><creator>Baek, Songjoon</creator><creator>Hager, Gordon L.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141023</creationdate><title>DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence</title><author>Sung, Myong-Hee ; Guertin, Michael J. ; Baek, Songjoon ; Hager, Gordon L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-5af0b5463837e620cb994e4be53ae87b88990a28bb74ad211a5bc6e088d425c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Base Sequence</topic><topic>binding sites</topic><topic>Binding Sites - genetics</topic><topic>chromatin</topic><topic>Deoxyribonuclease I - chemistry</topic><topic>deoxyribonucleases</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Cleavage</topic><topic>DNA Footprinting</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Genomics</topic><topic>Humans</topic><topic>nucleotide sequences</topic><topic>nucleotides</topic><topic>Protein Binding - genetics</topic><topic>Protein Structure, Tertiary</topic><topic>ROC Curve</topic><topic>Sequence Analysis, DNA</topic><topic>transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sung, Myong-Hee</creatorcontrib><creatorcontrib>Guertin, Michael J.</creatorcontrib><creatorcontrib>Baek, Songjoon</creatorcontrib><creatorcontrib>Hager, Gordon L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sung, Myong-Hee</au><au>Guertin, Michael J.</au><au>Baek, Songjoon</au><au>Hager, Gordon L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2014-10-23</date><risdate>2014</risdate><volume>56</volume><issue>2</issue><spage>275</spage><epage>285</epage><pages>275-285</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach. [Display omitted] •Many factor-binding events detected by ChIP-seq do not produce DNase footprints•DNA cleavage signatures at these sites are present in the absence of the factor•The cleavage signatures are observed at the cognate binding site in naked DNA•Depth of footprint is related to the residence time for the factor in living cells “Footprints” in chromatin imply protein binding. Sung et al. show that the primary structure of DNA largely influences the nuclease cleavage profile within a footprint, and the footprint’s depth reflects how long a given protein binds DNA.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25242143</pmid><doi>10.1016/j.molcel.2014.08.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2014-10, Vol.56 (2), p.275-285
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4272573
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Base Sequence
binding sites
Binding Sites - genetics
chromatin
Deoxyribonuclease I - chemistry
deoxyribonucleases
DNA
DNA - chemistry
DNA - metabolism
DNA Cleavage
DNA Footprinting
Endodeoxyribonucleases - chemistry
Genomics
Humans
nucleotide sequences
nucleotides
Protein Binding - genetics
Protein Structure, Tertiary
ROC Curve
Sequence Analysis, DNA
transcription factors
Transcription Factors - chemistry
Transcription Factors - metabolism
title DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNase%20Footprint%20Signatures%20Are%20Dictated%20by%20Factor%20Dynamics%20and%20DNA%20Sequence&rft.jtitle=Molecular%20cell&rft.au=Sung,%20Myong-Hee&rft.date=2014-10-23&rft.volume=56&rft.issue=2&rft.spage=275&rft.epage=285&rft.pages=275-285&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2014.08.016&rft_dat=%3Cproquest_pubme%3E1622061198%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622061198&rft_id=info:pmid/25242143&rft_els_id=S1097276514006716&rfr_iscdi=true