Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks
With the rapid development of biotechnologies, many types of biological data including molecular networks are now available. However, to obtain a more complete understanding of a biological system, the integration of molecular networks with other data, such as molecular sequences, protein domains an...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2014-09, Vol.15 (5), p.685-698 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 5 |
container_start_page | 685 |
container_title | Briefings in bioinformatics |
container_volume | 15 |
creator | Ma, Xiaotu Chen, Ting Sun, Fengzhu |
description | With the rapid development of biotechnologies, many types of biological data including molecular networks are now available. However, to obtain a more complete understanding of a biological system, the integration of molecular networks with other data, such as molecular sequences, protein domains and gene expression profiles, is needed. A key to the use of networks in biological studies is the definition of similarity among proteins over the networks. Here, we review applications of similarity measures over networks with a special focus on the following four problems: (i) predicting protein functions, (ii) prioritizing genes related to a phenotype given a set of seed genes that have been shown to be related to the phenotype, (iii) prioritizing genes related to a phenotype by integrating gene expression profiles and networks and (iv) identification of false positives and false negatives from RNAi experiments. Diffusion kernels are demonstrated to give superior performance in all these tasks, leading to the suggestion that diffusion kernels should be the primary choice for a network similarity metric over other similarity measures such as direct neighbors and shortest path distance. |
doi_str_mv | 10.1093/bib/bbt041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4271058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718928530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-ee1996f4d28796c569184e85c33b5d371c548a26618bbcf22a06ace83d2efcd83</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EomXhwg9AkbggpFB_27kgoYqPSpW4wNlynMmuS9YOtlMof4C_jaNdqsIFfPFo_Pgdz_hF6CnBrwju2Fnv-7O-L5iTe-iUcKVajgW_v8ZStYJLdoIe5XyFMcVKk4fohDKlteq6U_TzIhTYJlv8NTR2nlO0bge5GWNq5gSDd8WHbQ1jAR-acQk1EUNjw1CTPiZf_I-V2EI4XnNxP0_wvZl3EGK5mWt6yXdFfC2Z7EEnQPkW05f8GD0Y7ZThyXHfoM_v3n46_9Befnx_cf7msnWC6dICkK6TIx9ofb50QnZEc9DCMdaLgSniBNeWSkl037uRUouldaDZQGF0g2Yb9PqgOy_9HgYHoSQ7mdrK3qYbE603f54EvzPbeG04VQSLVeDFUSDFrwvkYvY-O5gmGyAu2RBFdEe1YPg_UFx_q9NK_RsVUgjM1rVBz_9Cr-KSQh3aSiksBOWiUi8PlEsx5wTjbYsEm9U1prrGHFxT4Wd3h3KL_rYJ-wUDV8KI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567055245</pqid></control><display><type>article</type><title>Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Oxford University Press Open Access</source><source>EZB Electronic Journals Library</source><source>EBSCOhost Business Source Complete</source><creator>Ma, Xiaotu ; Chen, Ting ; Sun, Fengzhu</creator><creatorcontrib>Ma, Xiaotu ; Chen, Ting ; Sun, Fengzhu</creatorcontrib><description>With the rapid development of biotechnologies, many types of biological data including molecular networks are now available. However, to obtain a more complete understanding of a biological system, the integration of molecular networks with other data, such as molecular sequences, protein domains and gene expression profiles, is needed. A key to the use of networks in biological studies is the definition of similarity among proteins over the networks. Here, we review applications of similarity measures over networks with a special focus on the following four problems: (i) predicting protein functions, (ii) prioritizing genes related to a phenotype given a set of seed genes that have been shown to be related to the phenotype, (iii) prioritizing genes related to a phenotype by integrating gene expression profiles and networks and (iv) identification of false positives and false negatives from RNAi experiments. Diffusion kernels are demonstrated to give superior performance in all these tasks, leading to the suggestion that diffusion kernels should be the primary choice for a network similarity metric over other similarity measures such as direct neighbors and shortest path distance.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbt041</identifier><identifier>PMID: 23788799</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Biological ; Biotechnology ; Diffusion ; Gene expression ; Gene Expression Profiling ; Genes ; Genetics ; Genotype & phenotype ; Kernels ; Models, Theoretical ; Networks ; Phenotype ; Protein Binding ; Proteins ; Proteins - genetics ; Proteins - metabolism ; RNA Interference ; RNA-protein interactions ; Similarity ; Technological change</subject><ispartof>Briefings in bioinformatics, 2014-09, Vol.15 (5), p.685-698</ispartof><rights>The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.</rights><rights>Copyright Oxford Publishing Limited(England) Sep 2014</rights><rights>The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-ee1996f4d28796c569184e85c33b5d371c548a26618bbcf22a06ace83d2efcd83</citedby><cites>FETCH-LOGICAL-c538t-ee1996f4d28796c569184e85c33b5d371c548a26618bbcf22a06ace83d2efcd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271058/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271058/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23788799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Xiaotu</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Sun, Fengzhu</creatorcontrib><title>Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>With the rapid development of biotechnologies, many types of biological data including molecular networks are now available. However, to obtain a more complete understanding of a biological system, the integration of molecular networks with other data, such as molecular sequences, protein domains and gene expression profiles, is needed. A key to the use of networks in biological studies is the definition of similarity among proteins over the networks. Here, we review applications of similarity measures over networks with a special focus on the following four problems: (i) predicting protein functions, (ii) prioritizing genes related to a phenotype given a set of seed genes that have been shown to be related to the phenotype, (iii) prioritizing genes related to a phenotype by integrating gene expression profiles and networks and (iv) identification of false positives and false negatives from RNAi experiments. Diffusion kernels are demonstrated to give superior performance in all these tasks, leading to the suggestion that diffusion kernels should be the primary choice for a network similarity metric over other similarity measures such as direct neighbors and shortest path distance.</description><subject>Biological</subject><subject>Biotechnology</subject><subject>Diffusion</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genotype & phenotype</subject><subject>Kernels</subject><subject>Models, Theoretical</subject><subject>Networks</subject><subject>Phenotype</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>RNA Interference</subject><subject>RNA-protein interactions</subject><subject>Similarity</subject><subject>Technological change</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EomXhwg9AkbggpFB_27kgoYqPSpW4wNlynMmuS9YOtlMof4C_jaNdqsIFfPFo_Pgdz_hF6CnBrwju2Fnv-7O-L5iTe-iUcKVajgW_v8ZStYJLdoIe5XyFMcVKk4fohDKlteq6U_TzIhTYJlv8NTR2nlO0bge5GWNq5gSDd8WHbQ1jAR-acQk1EUNjw1CTPiZf_I-V2EI4XnNxP0_wvZl3EGK5mWt6yXdFfC2Z7EEnQPkW05f8GD0Y7ZThyXHfoM_v3n46_9Befnx_cf7msnWC6dICkK6TIx9ofb50QnZEc9DCMdaLgSniBNeWSkl037uRUouldaDZQGF0g2Yb9PqgOy_9HgYHoSQ7mdrK3qYbE603f54EvzPbeG04VQSLVeDFUSDFrwvkYvY-O5gmGyAu2RBFdEe1YPg_UFx_q9NK_RsVUgjM1rVBz_9Cr-KSQh3aSiksBOWiUi8PlEsx5wTjbYsEm9U1prrGHFxT4Wd3h3KL_rYJ-wUDV8KI</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Ma, Xiaotu</creator><creator>Chen, Ting</creator><creator>Sun, Fengzhu</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks</title><author>Ma, Xiaotu ; Chen, Ting ; Sun, Fengzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-ee1996f4d28796c569184e85c33b5d371c548a26618bbcf22a06ace83d2efcd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological</topic><topic>Biotechnology</topic><topic>Diffusion</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genotype & phenotype</topic><topic>Kernels</topic><topic>Models, Theoretical</topic><topic>Networks</topic><topic>Phenotype</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>RNA Interference</topic><topic>RNA-protein interactions</topic><topic>Similarity</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiaotu</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Sun, Fengzhu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiaotu</au><au>Chen, Ting</au><au>Sun, Fengzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>15</volume><issue>5</issue><spage>685</spage><epage>698</epage><pages>685-698</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>With the rapid development of biotechnologies, many types of biological data including molecular networks are now available. However, to obtain a more complete understanding of a biological system, the integration of molecular networks with other data, such as molecular sequences, protein domains and gene expression profiles, is needed. A key to the use of networks in biological studies is the definition of similarity among proteins over the networks. Here, we review applications of similarity measures over networks with a special focus on the following four problems: (i) predicting protein functions, (ii) prioritizing genes related to a phenotype given a set of seed genes that have been shown to be related to the phenotype, (iii) prioritizing genes related to a phenotype by integrating gene expression profiles and networks and (iv) identification of false positives and false negatives from RNAi experiments. Diffusion kernels are demonstrated to give superior performance in all these tasks, leading to the suggestion that diffusion kernels should be the primary choice for a network similarity metric over other similarity measures such as direct neighbors and shortest path distance.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>23788799</pmid><doi>10.1093/bib/bbt041</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2014-09, Vol.15 (5), p.685-698 |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4271058 |
source | PubMed (Medline); MEDLINE; Oxford University Press Open Access; EZB Electronic Journals Library; EBSCOhost Business Source Complete |
subjects | Biological Biotechnology Diffusion Gene expression Gene Expression Profiling Genes Genetics Genotype & phenotype Kernels Models, Theoretical Networks Phenotype Protein Binding Proteins Proteins - genetics Proteins - metabolism RNA Interference RNA-protein interactions Similarity Technological change |
title | Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20approaches%20for%20predicting%20protein%20function%20and%20prioritizing%20genes%20for%20complex%20phenotypes%20using%20protein%20interaction%20networks&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Ma,%20Xiaotu&rft.date=2014-09-01&rft.volume=15&rft.issue=5&rft.spage=685&rft.epage=698&rft.pages=685-698&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbt041&rft_dat=%3Cproquest_pubme%3E1718928530%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567055245&rft_id=info:pmid/23788799&rfr_iscdi=true |