Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues
Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltra...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2014-12, Vol.53 (49), p.7854-7865 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7865 |
---|---|
container_issue | 49 |
container_start_page | 7854 |
container_title | Biochemistry (Easton) |
container_volume | 53 |
creator | Seo, Jeong-Woo Ma, Ming Kwong, Thomas Ju, Jianhua Lim, Si-Kyu Jiang, Hui Lohman, Jeremy R Yang, Chunying Cleveland, John Zazopoulos, Emmanuel Farnet, Chris M Shen, Ben |
description | Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity. |
doi_str_mv | 10.1021/bi501396v |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4270375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1637563718</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</originalsourceid><addsrcrecordid>eNqNks1u1DAQgCMEokvhwAsgX5DgEPBPnMQXpGXVQqUtrWB7jhxnknVJ7NR2FoUH5jnwsmUFEgcOln_m0zcz1iTJc4LfEEzJ21pzTJjIdw-SBeEUp5kQ_GGywBjnKRU5PkmeeH8brxkussfJCeUZ5oLni-THyg6jdDLoHaDVNp5UAKe_xwdrkG1R2AJax0c96MYOs9IGSdMg7W16qTsnfYioQe-19bOJcNAKXUq11SZqwKPPsAPZa9OhGzP5SfboHGSYXAy11qGlmvvgpPEtRBekPXiPNvMI6AJd237-GoUNoC97d4z7X8mvnd3pZu-UBl2No3VhMjrMaGPRmelianDoE3xDSyN7203gnyaPWtl7eHa_nyY352eb1cd0ffXhYrVcpzJjZUhbRVnJaAmNFIw2WLFS1BnnKuOtYIRIjguglNaiUHnZEo4VbwnLKeO1yHDJTpN3B-841QM0Ckxsrq9Gpwfp5spKXf0dMXpbdXZXZbTArOBR8Ope4OxdLDxUg_YK-l4asJOvSMnyPBOM_weaR2FcZF_W6wOqnPXeQXusiOBqP0LVcYQi--LPFo7k75mJwMsDIJWvbu3k4if7f4h-AugA1Bs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637563718</pqid></control><display><type>article</type><title>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</title><source>ACS Publications</source><source>MEDLINE</source><creator>Seo, Jeong-Woo ; Ma, Ming ; Kwong, Thomas ; Ju, Jianhua ; Lim, Si-Kyu ; Jiang, Hui ; Lohman, Jeremy R ; Yang, Chunying ; Cleveland, John ; Zazopoulos, Emmanuel ; Farnet, Chris M ; Shen, Ben</creator><creatorcontrib>Seo, Jeong-Woo ; Ma, Ming ; Kwong, Thomas ; Ju, Jianhua ; Lim, Si-Kyu ; Jiang, Hui ; Lohman, Jeremy R ; Yang, Chunying ; Cleveland, John ; Zazopoulos, Emmanuel ; Farnet, Chris M ; Shen, Ben</creatorcontrib><description>Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi501396v</identifier><identifier>PMID: 25405956</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject><![CDATA[Antibiotics, Antineoplastic - biosynthesis ; Antibiotics, Antineoplastic - chemistry ; Antibiotics, Antineoplastic - isolation & purification ; Antibiotics, Antineoplastic - pharmacology ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; Bioreactors ; biosynthesis ; Cell Line, Tumor ; Cell Survival - drug effects ; cytochrome P-450 ; Drug Design ; Gene Silencing ; Humans ; macrolides ; Macrolides - chemistry ; Macrolides - isolation & purification ; Macrolides - metabolism ; Macrolides - pharmacology ; Models, Biological ; Molecular Sequence Data ; Molecular Structure ; Multigene Family ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; mutants ; mutation ; Neoplasms - drug therapy ; Piperidones - chemistry ; Piperidones - isolation & purification ; Piperidones - metabolism ; Piperidones - pharmacology ; polyketide synthases ; Polyketide Synthases - antagonists & inhibitors ; Polyketide Synthases - chemistry ; Polyketide Synthases - genetics ; Polyketide Synthases - metabolism ; Polyketides - chemistry ; Polyketides - isolation & purification ; Polyketides - metabolism ; Polyketides - pharmacology ; Protein Engineering ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Stereoisomerism ; Streptomyces - enzymology ; Streptomyces - genetics ; Streptomyces platensis ; Structure-Activity Relationship ; structure-activity relationships]]></subject><ispartof>Biochemistry (Easton), 2014-12, Vol.53 (49), p.7854-7865</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</citedby><cites>FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi501396v$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi501396v$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25405956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Jeong-Woo</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Kwong, Thomas</creatorcontrib><creatorcontrib>Ju, Jianhua</creatorcontrib><creatorcontrib>Lim, Si-Kyu</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Lohman, Jeremy R</creatorcontrib><creatorcontrib>Yang, Chunying</creatorcontrib><creatorcontrib>Cleveland, John</creatorcontrib><creatorcontrib>Zazopoulos, Emmanuel</creatorcontrib><creatorcontrib>Farnet, Chris M</creatorcontrib><creatorcontrib>Shen, Ben</creatorcontrib><title>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.</description><subject>Antibiotics, Antineoplastic - biosynthesis</subject><subject>Antibiotics, Antineoplastic - chemistry</subject><subject>Antibiotics, Antineoplastic - isolation & purification</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Bacterial Proteins - antagonists & inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Bioreactors</subject><subject>biosynthesis</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>cytochrome P-450</subject><subject>Drug Design</subject><subject>Gene Silencing</subject><subject>Humans</subject><subject>macrolides</subject><subject>Macrolides - chemistry</subject><subject>Macrolides - isolation & purification</subject><subject>Macrolides - metabolism</subject><subject>Macrolides - pharmacology</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Multigene Family</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>mutants</subject><subject>mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Piperidones - chemistry</subject><subject>Piperidones - isolation & purification</subject><subject>Piperidones - metabolism</subject><subject>Piperidones - pharmacology</subject><subject>polyketide synthases</subject><subject>Polyketide Synthases - antagonists & inhibitors</subject><subject>Polyketide Synthases - chemistry</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - metabolism</subject><subject>Polyketides - chemistry</subject><subject>Polyketides - isolation & purification</subject><subject>Polyketides - metabolism</subject><subject>Polyketides - pharmacology</subject><subject>Protein Engineering</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Stereoisomerism</subject><subject>Streptomyces - enzymology</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces platensis</subject><subject>Structure-Activity Relationship</subject><subject>structure-activity relationships</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqNks1u1DAQgCMEokvhwAsgX5DgEPBPnMQXpGXVQqUtrWB7jhxnknVJ7NR2FoUH5jnwsmUFEgcOln_m0zcz1iTJc4LfEEzJ21pzTJjIdw-SBeEUp5kQ_GGywBjnKRU5PkmeeH8brxkussfJCeUZ5oLni-THyg6jdDLoHaDVNp5UAKe_xwdrkG1R2AJax0c96MYOs9IGSdMg7W16qTsnfYioQe-19bOJcNAKXUq11SZqwKPPsAPZa9OhGzP5SfboHGSYXAy11qGlmvvgpPEtRBekPXiPNvMI6AJd237-GoUNoC97d4z7X8mvnd3pZu-UBl2No3VhMjrMaGPRmelianDoE3xDSyN7203gnyaPWtl7eHa_nyY352eb1cd0ffXhYrVcpzJjZUhbRVnJaAmNFIw2WLFS1BnnKuOtYIRIjguglNaiUHnZEo4VbwnLKeO1yHDJTpN3B-841QM0Ckxsrq9Gpwfp5spKXf0dMXpbdXZXZbTArOBR8Ope4OxdLDxUg_YK-l4asJOvSMnyPBOM_weaR2FcZF_W6wOqnPXeQXusiOBqP0LVcYQi--LPFo7k75mJwMsDIJWvbu3k4if7f4h-AugA1Bs</recordid><startdate>20141216</startdate><enddate>20141216</enddate><creator>Seo, Jeong-Woo</creator><creator>Ma, Ming</creator><creator>Kwong, Thomas</creator><creator>Ju, Jianhua</creator><creator>Lim, Si-Kyu</creator><creator>Jiang, Hui</creator><creator>Lohman, Jeremy R</creator><creator>Yang, Chunying</creator><creator>Cleveland, John</creator><creator>Zazopoulos, Emmanuel</creator><creator>Farnet, Chris M</creator><creator>Shen, Ben</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141216</creationdate><title>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</title><author>Seo, Jeong-Woo ; Ma, Ming ; Kwong, Thomas ; Ju, Jianhua ; Lim, Si-Kyu ; Jiang, Hui ; Lohman, Jeremy R ; Yang, Chunying ; Cleveland, John ; Zazopoulos, Emmanuel ; Farnet, Chris M ; Shen, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibiotics, Antineoplastic - biosynthesis</topic><topic>Antibiotics, Antineoplastic - chemistry</topic><topic>Antibiotics, Antineoplastic - isolation & purification</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Bacterial Proteins - antagonists & inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Bioreactors</topic><topic>biosynthesis</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>cytochrome P-450</topic><topic>Drug Design</topic><topic>Gene Silencing</topic><topic>Humans</topic><topic>macrolides</topic><topic>Macrolides - chemistry</topic><topic>Macrolides - isolation & purification</topic><topic>Macrolides - metabolism</topic><topic>Macrolides - pharmacology</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Multigene Family</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>mutants</topic><topic>mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Piperidones - chemistry</topic><topic>Piperidones - isolation & purification</topic><topic>Piperidones - metabolism</topic><topic>Piperidones - pharmacology</topic><topic>polyketide synthases</topic><topic>Polyketide Synthases - antagonists & inhibitors</topic><topic>Polyketide Synthases - chemistry</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - metabolism</topic><topic>Polyketides - chemistry</topic><topic>Polyketides - isolation & purification</topic><topic>Polyketides - metabolism</topic><topic>Polyketides - pharmacology</topic><topic>Protein Engineering</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Stereoisomerism</topic><topic>Streptomyces - enzymology</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces platensis</topic><topic>Structure-Activity Relationship</topic><topic>structure-activity relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Jeong-Woo</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Kwong, Thomas</creatorcontrib><creatorcontrib>Ju, Jianhua</creatorcontrib><creatorcontrib>Lim, Si-Kyu</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Lohman, Jeremy R</creatorcontrib><creatorcontrib>Yang, Chunying</creatorcontrib><creatorcontrib>Cleveland, John</creatorcontrib><creatorcontrib>Zazopoulos, Emmanuel</creatorcontrib><creatorcontrib>Farnet, Chris M</creatorcontrib><creatorcontrib>Shen, Ben</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Jeong-Woo</au><au>Ma, Ming</au><au>Kwong, Thomas</au><au>Ju, Jianhua</au><au>Lim, Si-Kyu</au><au>Jiang, Hui</au><au>Lohman, Jeremy R</au><au>Yang, Chunying</au><au>Cleveland, John</au><au>Zazopoulos, Emmanuel</au><au>Farnet, Chris M</au><au>Shen, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2014-12-16</date><risdate>2014</risdate><volume>53</volume><issue>49</issue><spage>7854</spage><epage>7865</epage><pages>7854-7865</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25405956</pmid><doi>10.1021/bi501396v</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2014-12, Vol.53 (49), p.7854-7865 |
issn | 0006-2960 1520-4995 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4270375 |
source | ACS Publications; MEDLINE |
subjects | Antibiotics, Antineoplastic - biosynthesis Antibiotics, Antineoplastic - chemistry Antibiotics, Antineoplastic - isolation & purification Antibiotics, Antineoplastic - pharmacology Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Base Sequence Bioreactors biosynthesis Cell Line, Tumor Cell Survival - drug effects cytochrome P-450 Drug Design Gene Silencing Humans macrolides Macrolides - chemistry Macrolides - isolation & purification Macrolides - metabolism Macrolides - pharmacology Models, Biological Molecular Sequence Data Molecular Structure Multigene Family Mutant Proteins - chemistry Mutant Proteins - metabolism mutants mutation Neoplasms - drug therapy Piperidones - chemistry Piperidones - isolation & purification Piperidones - metabolism Piperidones - pharmacology polyketide synthases Polyketide Synthases - antagonists & inhibitors Polyketide Synthases - chemistry Polyketide Synthases - genetics Polyketide Synthases - metabolism Polyketides - chemistry Polyketides - isolation & purification Polyketides - metabolism Polyketides - pharmacology Protein Engineering Recombinant Proteins - chemistry Recombinant Proteins - metabolism Stereoisomerism Streptomyces - enzymology Streptomyces - genetics Streptomyces platensis Structure-Activity Relationship structure-activity relationships |
title | Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Characterization%20of%20the%20Lactimidomycin%20and%20iso-Migrastatin%20Biosynthetic%20Machineries%20Revealing%20Unusual%20Features%20for%20Acyltransferase-less%20Type%20I%20Polyketide%20Synthases%20and%20Providing%20an%20Opportunity%20To%20Engineer%20New%20Analogues&rft.jtitle=Biochemistry%20(Easton)&rft.au=Seo,%20Jeong-Woo&rft.date=2014-12-16&rft.volume=53&rft.issue=49&rft.spage=7854&rft.epage=7865&rft.pages=7854-7865&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi501396v&rft_dat=%3Cproquest_pubme%3E1637563718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1637563718&rft_id=info:pmid/25405956&rfr_iscdi=true |