Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues

Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2014-12, Vol.53 (49), p.7854-7865
Hauptverfasser: Seo, Jeong-Woo, Ma, Ming, Kwong, Thomas, Ju, Jianhua, Lim, Si-Kyu, Jiang, Hui, Lohman, Jeremy R, Yang, Chunying, Cleveland, John, Zazopoulos, Emmanuel, Farnet, Chris M, Shen, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7865
container_issue 49
container_start_page 7854
container_title Biochemistry (Easton)
container_volume 53
creator Seo, Jeong-Woo
Ma, Ming
Kwong, Thomas
Ju, Jianhua
Lim, Si-Kyu
Jiang, Hui
Lohman, Jeremy R
Yang, Chunying
Cleveland, John
Zazopoulos, Emmanuel
Farnet, Chris M
Shen, Ben
description Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.
doi_str_mv 10.1021/bi501396v
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4270375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1637563718</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</originalsourceid><addsrcrecordid>eNqNks1u1DAQgCMEokvhwAsgX5DgEPBPnMQXpGXVQqUtrWB7jhxnknVJ7NR2FoUH5jnwsmUFEgcOln_m0zcz1iTJc4LfEEzJ21pzTJjIdw-SBeEUp5kQ_GGywBjnKRU5PkmeeH8brxkussfJCeUZ5oLni-THyg6jdDLoHaDVNp5UAKe_xwdrkG1R2AJax0c96MYOs9IGSdMg7W16qTsnfYioQe-19bOJcNAKXUq11SZqwKPPsAPZa9OhGzP5SfboHGSYXAy11qGlmvvgpPEtRBekPXiPNvMI6AJd237-GoUNoC97d4z7X8mvnd3pZu-UBl2No3VhMjrMaGPRmelianDoE3xDSyN7203gnyaPWtl7eHa_nyY352eb1cd0ffXhYrVcpzJjZUhbRVnJaAmNFIw2WLFS1BnnKuOtYIRIjguglNaiUHnZEo4VbwnLKeO1yHDJTpN3B-841QM0Ckxsrq9Gpwfp5spKXf0dMXpbdXZXZbTArOBR8Ope4OxdLDxUg_YK-l4asJOvSMnyPBOM_weaR2FcZF_W6wOqnPXeQXusiOBqP0LVcYQi--LPFo7k75mJwMsDIJWvbu3k4if7f4h-AugA1Bs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637563718</pqid></control><display><type>article</type><title>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</title><source>ACS Publications</source><source>MEDLINE</source><creator>Seo, Jeong-Woo ; Ma, Ming ; Kwong, Thomas ; Ju, Jianhua ; Lim, Si-Kyu ; Jiang, Hui ; Lohman, Jeremy R ; Yang, Chunying ; Cleveland, John ; Zazopoulos, Emmanuel ; Farnet, Chris M ; Shen, Ben</creator><creatorcontrib>Seo, Jeong-Woo ; Ma, Ming ; Kwong, Thomas ; Ju, Jianhua ; Lim, Si-Kyu ; Jiang, Hui ; Lohman, Jeremy R ; Yang, Chunying ; Cleveland, John ; Zazopoulos, Emmanuel ; Farnet, Chris M ; Shen, Ben</creatorcontrib><description>Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi501396v</identifier><identifier>PMID: 25405956</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject><![CDATA[Antibiotics, Antineoplastic - biosynthesis ; Antibiotics, Antineoplastic - chemistry ; Antibiotics, Antineoplastic - isolation & purification ; Antibiotics, Antineoplastic - pharmacology ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; Bioreactors ; biosynthesis ; Cell Line, Tumor ; Cell Survival - drug effects ; cytochrome P-450 ; Drug Design ; Gene Silencing ; Humans ; macrolides ; Macrolides - chemistry ; Macrolides - isolation & purification ; Macrolides - metabolism ; Macrolides - pharmacology ; Models, Biological ; Molecular Sequence Data ; Molecular Structure ; Multigene Family ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; mutants ; mutation ; Neoplasms - drug therapy ; Piperidones - chemistry ; Piperidones - isolation & purification ; Piperidones - metabolism ; Piperidones - pharmacology ; polyketide synthases ; Polyketide Synthases - antagonists & inhibitors ; Polyketide Synthases - chemistry ; Polyketide Synthases - genetics ; Polyketide Synthases - metabolism ; Polyketides - chemistry ; Polyketides - isolation & purification ; Polyketides - metabolism ; Polyketides - pharmacology ; Protein Engineering ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Stereoisomerism ; Streptomyces - enzymology ; Streptomyces - genetics ; Streptomyces platensis ; Structure-Activity Relationship ; structure-activity relationships]]></subject><ispartof>Biochemistry (Easton), 2014-12, Vol.53 (49), p.7854-7865</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</citedby><cites>FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi501396v$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi501396v$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25405956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Jeong-Woo</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Kwong, Thomas</creatorcontrib><creatorcontrib>Ju, Jianhua</creatorcontrib><creatorcontrib>Lim, Si-Kyu</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Lohman, Jeremy R</creatorcontrib><creatorcontrib>Yang, Chunying</creatorcontrib><creatorcontrib>Cleveland, John</creatorcontrib><creatorcontrib>Zazopoulos, Emmanuel</creatorcontrib><creatorcontrib>Farnet, Chris M</creatorcontrib><creatorcontrib>Shen, Ben</creatorcontrib><title>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.</description><subject>Antibiotics, Antineoplastic - biosynthesis</subject><subject>Antibiotics, Antineoplastic - chemistry</subject><subject>Antibiotics, Antineoplastic - isolation &amp; purification</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Bacterial Proteins - antagonists &amp; inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Bioreactors</subject><subject>biosynthesis</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>cytochrome P-450</subject><subject>Drug Design</subject><subject>Gene Silencing</subject><subject>Humans</subject><subject>macrolides</subject><subject>Macrolides - chemistry</subject><subject>Macrolides - isolation &amp; purification</subject><subject>Macrolides - metabolism</subject><subject>Macrolides - pharmacology</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Multigene Family</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>mutants</subject><subject>mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Piperidones - chemistry</subject><subject>Piperidones - isolation &amp; purification</subject><subject>Piperidones - metabolism</subject><subject>Piperidones - pharmacology</subject><subject>polyketide synthases</subject><subject>Polyketide Synthases - antagonists &amp; inhibitors</subject><subject>Polyketide Synthases - chemistry</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - metabolism</subject><subject>Polyketides - chemistry</subject><subject>Polyketides - isolation &amp; purification</subject><subject>Polyketides - metabolism</subject><subject>Polyketides - pharmacology</subject><subject>Protein Engineering</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Stereoisomerism</subject><subject>Streptomyces - enzymology</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces platensis</subject><subject>Structure-Activity Relationship</subject><subject>structure-activity relationships</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqNks1u1DAQgCMEokvhwAsgX5DgEPBPnMQXpGXVQqUtrWB7jhxnknVJ7NR2FoUH5jnwsmUFEgcOln_m0zcz1iTJc4LfEEzJ21pzTJjIdw-SBeEUp5kQ_GGywBjnKRU5PkmeeH8brxkussfJCeUZ5oLni-THyg6jdDLoHaDVNp5UAKe_xwdrkG1R2AJax0c96MYOs9IGSdMg7W16qTsnfYioQe-19bOJcNAKXUq11SZqwKPPsAPZa9OhGzP5SfboHGSYXAy11qGlmvvgpPEtRBekPXiPNvMI6AJd237-GoUNoC97d4z7X8mvnd3pZu-UBl2No3VhMjrMaGPRmelianDoE3xDSyN7203gnyaPWtl7eHa_nyY352eb1cd0ffXhYrVcpzJjZUhbRVnJaAmNFIw2WLFS1BnnKuOtYIRIjguglNaiUHnZEo4VbwnLKeO1yHDJTpN3B-841QM0Ckxsrq9Gpwfp5spKXf0dMXpbdXZXZbTArOBR8Ope4OxdLDxUg_YK-l4asJOvSMnyPBOM_weaR2FcZF_W6wOqnPXeQXusiOBqP0LVcYQi--LPFo7k75mJwMsDIJWvbu3k4if7f4h-AugA1Bs</recordid><startdate>20141216</startdate><enddate>20141216</enddate><creator>Seo, Jeong-Woo</creator><creator>Ma, Ming</creator><creator>Kwong, Thomas</creator><creator>Ju, Jianhua</creator><creator>Lim, Si-Kyu</creator><creator>Jiang, Hui</creator><creator>Lohman, Jeremy R</creator><creator>Yang, Chunying</creator><creator>Cleveland, John</creator><creator>Zazopoulos, Emmanuel</creator><creator>Farnet, Chris M</creator><creator>Shen, Ben</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141216</creationdate><title>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</title><author>Seo, Jeong-Woo ; Ma, Ming ; Kwong, Thomas ; Ju, Jianhua ; Lim, Si-Kyu ; Jiang, Hui ; Lohman, Jeremy R ; Yang, Chunying ; Cleveland, John ; Zazopoulos, Emmanuel ; Farnet, Chris M ; Shen, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-fc238328eda932d0c389b455c45f9311a507e222b97c68f150c5f136235b94083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibiotics, Antineoplastic - biosynthesis</topic><topic>Antibiotics, Antineoplastic - chemistry</topic><topic>Antibiotics, Antineoplastic - isolation &amp; purification</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Bacterial Proteins - antagonists &amp; inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Bioreactors</topic><topic>biosynthesis</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>cytochrome P-450</topic><topic>Drug Design</topic><topic>Gene Silencing</topic><topic>Humans</topic><topic>macrolides</topic><topic>Macrolides - chemistry</topic><topic>Macrolides - isolation &amp; purification</topic><topic>Macrolides - metabolism</topic><topic>Macrolides - pharmacology</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Multigene Family</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>mutants</topic><topic>mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Piperidones - chemistry</topic><topic>Piperidones - isolation &amp; purification</topic><topic>Piperidones - metabolism</topic><topic>Piperidones - pharmacology</topic><topic>polyketide synthases</topic><topic>Polyketide Synthases - antagonists &amp; inhibitors</topic><topic>Polyketide Synthases - chemistry</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - metabolism</topic><topic>Polyketides - chemistry</topic><topic>Polyketides - isolation &amp; purification</topic><topic>Polyketides - metabolism</topic><topic>Polyketides - pharmacology</topic><topic>Protein Engineering</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Stereoisomerism</topic><topic>Streptomyces - enzymology</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces platensis</topic><topic>Structure-Activity Relationship</topic><topic>structure-activity relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Jeong-Woo</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Kwong, Thomas</creatorcontrib><creatorcontrib>Ju, Jianhua</creatorcontrib><creatorcontrib>Lim, Si-Kyu</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Lohman, Jeremy R</creatorcontrib><creatorcontrib>Yang, Chunying</creatorcontrib><creatorcontrib>Cleveland, John</creatorcontrib><creatorcontrib>Zazopoulos, Emmanuel</creatorcontrib><creatorcontrib>Farnet, Chris M</creatorcontrib><creatorcontrib>Shen, Ben</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Jeong-Woo</au><au>Ma, Ming</au><au>Kwong, Thomas</au><au>Ju, Jianhua</au><au>Lim, Si-Kyu</au><au>Jiang, Hui</au><au>Lohman, Jeremy R</au><au>Yang, Chunying</au><au>Cleveland, John</au><au>Zazopoulos, Emmanuel</au><au>Farnet, Chris M</au><au>Shen, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2014-12-16</date><risdate>2014</risdate><volume>53</volume><issue>49</issue><spage>7854</spage><epage>7865</epage><pages>7854-7865</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group at C-8 or C-9 retain most of the activity whereas analogues with double substitutions at C-8 and C-9 lose significant activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25405956</pmid><doi>10.1021/bi501396v</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2014-12, Vol.53 (49), p.7854-7865
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4270375
source ACS Publications; MEDLINE
subjects Antibiotics, Antineoplastic - biosynthesis
Antibiotics, Antineoplastic - chemistry
Antibiotics, Antineoplastic - isolation & purification
Antibiotics, Antineoplastic - pharmacology
Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Bioreactors
biosynthesis
Cell Line, Tumor
Cell Survival - drug effects
cytochrome P-450
Drug Design
Gene Silencing
Humans
macrolides
Macrolides - chemistry
Macrolides - isolation & purification
Macrolides - metabolism
Macrolides - pharmacology
Models, Biological
Molecular Sequence Data
Molecular Structure
Multigene Family
Mutant Proteins - chemistry
Mutant Proteins - metabolism
mutants
mutation
Neoplasms - drug therapy
Piperidones - chemistry
Piperidones - isolation & purification
Piperidones - metabolism
Piperidones - pharmacology
polyketide synthases
Polyketide Synthases - antagonists & inhibitors
Polyketide Synthases - chemistry
Polyketide Synthases - genetics
Polyketide Synthases - metabolism
Polyketides - chemistry
Polyketides - isolation & purification
Polyketides - metabolism
Polyketides - pharmacology
Protein Engineering
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Stereoisomerism
Streptomyces - enzymology
Streptomyces - genetics
Streptomyces platensis
Structure-Activity Relationship
structure-activity relationships
title Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Characterization%20of%20the%20Lactimidomycin%20and%20iso-Migrastatin%20Biosynthetic%20Machineries%20Revealing%20Unusual%20Features%20for%20Acyltransferase-less%20Type%20I%20Polyketide%20Synthases%20and%20Providing%20an%20Opportunity%20To%20Engineer%20New%20Analogues&rft.jtitle=Biochemistry%20(Easton)&rft.au=Seo,%20Jeong-Woo&rft.date=2014-12-16&rft.volume=53&rft.issue=49&rft.spage=7854&rft.epage=7865&rft.pages=7854-7865&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi501396v&rft_dat=%3Cproquest_pubme%3E1637563718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1637563718&rft_id=info:pmid/25405956&rfr_iscdi=true