Bystander effects and radiotherapy
Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiati...
Gespeichert in:
Veröffentlicht in: | Reports of practical oncology and radiotherapy 2015-01, Vol.20 (1), p.12-21 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 12 |
container_title | Reports of practical oncology and radiotherapy |
container_volume | 20 |
creator | Marín, Alicia Martín, Margarita Liñán, Olga Alvarenga, Felipe López, Mario Fernández, Laura Büchser, David Cerezo, Laura |
description | Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy. |
doi_str_mv | 10.1016/j.rpor.2014.08.004 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1507136714001424</els_id><sourcerecordid>1_s2_0_S1507136714001424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouqh_wIMs3lsnaT5aEEEXv0DwoJ6HNJ1q1rVdkirsvzdlVdSDYSCEmfedzDOMHXDIOXB9PM_Dsg-5AC5zKHMAucEmAsoik1rCJptwBSbjhTY7bD_GOYzHgFBmm-0IpQqlTDVhR-erONiuoTCltiU3xGl6TYNtfD88U7DL1R7bau0i0v7nvcseLy8eZtfZ7d3VzezsNnNawZBZMo0WBK6SSgsntCmodQApRF3VKWtKYYra6MoaLoUzJNNvFBQ1WBBU7LLTte_yrX6lxlE3BLvAZfCvNqywtx5_Zzr_jE_9O0qhS1WVyUCsDVzoYwzUfms54AgN5zhCwxEaQokJWhId_uz6LflClApO1gWUZn_3FDA6T52jxofEC5ve_-9_-kfuFr7zzi5eaEVx3r-FLlFFjlEg4P24tnFrXEJyEbL4AONpkjc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bystander effects and radiotherapy</title><source>Access via ScienceDirect (Elsevier)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Marín, Alicia ; Martín, Margarita ; Liñán, Olga ; Alvarenga, Felipe ; López, Mario ; Fernández, Laura ; Büchser, David ; Cerezo, Laura</creator><creatorcontrib>Marín, Alicia ; Martín, Margarita ; Liñán, Olga ; Alvarenga, Felipe ; López, Mario ; Fernández, Laura ; Büchser, David ; Cerezo, Laura</creatorcontrib><description>Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.</description><identifier>ISSN: 1507-1367</identifier><identifier>EISSN: 2083-4640</identifier><identifier>DOI: 10.1016/j.rpor.2014.08.004</identifier><identifier>PMID: 25535579</identifier><language>eng</language><publisher>Netherlands: Elsevier Urban & Partner Sp. z.o.o</publisher><subject>Adaptive response ; Bystander effect ; Fractionated radiotherapy ; Hematology, Oncology and Palliative Medicine ; IMRT ; Radiology ; Radiotherapy ; Review</subject><ispartof>Reports of practical oncology and radiotherapy, 2015-01, Vol.20 (1), p.12-21</ispartof><rights>Greater Poland Cancer Centre</rights><rights>2014 Greater Poland Cancer Centre</rights><rights>2015 Greater Poland Cancer Centre. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved. 2014 Greater Poland Cancer Centre</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</citedby><cites>FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</cites><orcidid>0000-0002-8052-0895 ; 0000-0002-8070-3595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268598/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rpor.2014.08.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25535579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marín, Alicia</creatorcontrib><creatorcontrib>Martín, Margarita</creatorcontrib><creatorcontrib>Liñán, Olga</creatorcontrib><creatorcontrib>Alvarenga, Felipe</creatorcontrib><creatorcontrib>López, Mario</creatorcontrib><creatorcontrib>Fernández, Laura</creatorcontrib><creatorcontrib>Büchser, David</creatorcontrib><creatorcontrib>Cerezo, Laura</creatorcontrib><title>Bystander effects and radiotherapy</title><title>Reports of practical oncology and radiotherapy</title><addtitle>Rep Pract Oncol Radiother</addtitle><description>Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.</description><subject>Adaptive response</subject><subject>Bystander effect</subject><subject>Fractionated radiotherapy</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>IMRT</subject><subject>Radiology</subject><subject>Radiotherapy</subject><subject>Review</subject><issn>1507-1367</issn><issn>2083-4640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouqh_wIMs3lsnaT5aEEEXv0DwoJ6HNJ1q1rVdkirsvzdlVdSDYSCEmfedzDOMHXDIOXB9PM_Dsg-5AC5zKHMAucEmAsoik1rCJptwBSbjhTY7bD_GOYzHgFBmm-0IpQqlTDVhR-erONiuoTCltiU3xGl6TYNtfD88U7DL1R7bau0i0v7nvcseLy8eZtfZ7d3VzezsNnNawZBZMo0WBK6SSgsntCmodQApRF3VKWtKYYra6MoaLoUzJNNvFBQ1WBBU7LLTte_yrX6lxlE3BLvAZfCvNqywtx5_Zzr_jE_9O0qhS1WVyUCsDVzoYwzUfms54AgN5zhCwxEaQokJWhId_uz6LflClApO1gWUZn_3FDA6T52jxofEC5ve_-9_-kfuFr7zzi5eaEVx3r-FLlFFjlEg4P24tnFrXEJyEbL4AONpkjc</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Marín, Alicia</creator><creator>Martín, Margarita</creator><creator>Liñán, Olga</creator><creator>Alvarenga, Felipe</creator><creator>López, Mario</creator><creator>Fernández, Laura</creator><creator>Büchser, David</creator><creator>Cerezo, Laura</creator><general>Elsevier Urban & Partner Sp. z.o.o</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8052-0895</orcidid><orcidid>https://orcid.org/0000-0002-8070-3595</orcidid></search><sort><creationdate>20150101</creationdate><title>Bystander effects and radiotherapy</title><author>Marín, Alicia ; Martín, Margarita ; Liñán, Olga ; Alvarenga, Felipe ; López, Mario ; Fernández, Laura ; Büchser, David ; Cerezo, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive response</topic><topic>Bystander effect</topic><topic>Fractionated radiotherapy</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>IMRT</topic><topic>Radiology</topic><topic>Radiotherapy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marín, Alicia</creatorcontrib><creatorcontrib>Martín, Margarita</creatorcontrib><creatorcontrib>Liñán, Olga</creatorcontrib><creatorcontrib>Alvarenga, Felipe</creatorcontrib><creatorcontrib>López, Mario</creatorcontrib><creatorcontrib>Fernández, Laura</creatorcontrib><creatorcontrib>Büchser, David</creatorcontrib><creatorcontrib>Cerezo, Laura</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Reports of practical oncology and radiotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marín, Alicia</au><au>Martín, Margarita</au><au>Liñán, Olga</au><au>Alvarenga, Felipe</au><au>López, Mario</au><au>Fernández, Laura</au><au>Büchser, David</au><au>Cerezo, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bystander effects and radiotherapy</atitle><jtitle>Reports of practical oncology and radiotherapy</jtitle><addtitle>Rep Pract Oncol Radiother</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>20</volume><issue>1</issue><spage>12</spage><epage>21</epage><pages>12-21</pages><issn>1507-1367</issn><eissn>2083-4640</eissn><abstract>Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.</abstract><cop>Netherlands</cop><pub>Elsevier Urban & Partner Sp. z.o.o</pub><pmid>25535579</pmid><doi>10.1016/j.rpor.2014.08.004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8052-0895</orcidid><orcidid>https://orcid.org/0000-0002-8070-3595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1507-1367 |
ispartof | Reports of practical oncology and radiotherapy, 2015-01, Vol.20 (1), p.12-21 |
issn | 1507-1367 2083-4640 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268598 |
source | Access via ScienceDirect (Elsevier); Free E-Journal (出版社公開部分のみ); DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Adaptive response Bystander effect Fractionated radiotherapy Hematology, Oncology and Palliative Medicine IMRT Radiology Radiotherapy Review |
title | Bystander effects and radiotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bystander%20effects%20and%20radiotherapy&rft.jtitle=Reports%20of%20practical%20oncology%20and%20radiotherapy&rft.au=Mar%C3%ADn,%20Alicia&rft.date=2015-01-01&rft.volume=20&rft.issue=1&rft.spage=12&rft.epage=21&rft.pages=12-21&rft.issn=1507-1367&rft.eissn=2083-4640&rft_id=info:doi/10.1016/j.rpor.2014.08.004&rft_dat=%3Celsevier_pubme%3E1_s2_0_S1507136714001424%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25535579&rft_els_id=1_s2_0_S1507136714001424&rfr_iscdi=true |