Bystander effects and radiotherapy

Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reports of practical oncology and radiotherapy 2015-01, Vol.20 (1), p.12-21
Hauptverfasser: Marín, Alicia, Martín, Margarita, Liñán, Olga, Alvarenga, Felipe, López, Mario, Fernández, Laura, Büchser, David, Cerezo, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 12
container_title Reports of practical oncology and radiotherapy
container_volume 20
creator Marín, Alicia
Martín, Margarita
Liñán, Olga
Alvarenga, Felipe
López, Mario
Fernández, Laura
Büchser, David
Cerezo, Laura
description Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.
doi_str_mv 10.1016/j.rpor.2014.08.004
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1507136714001424</els_id><sourcerecordid>1_s2_0_S1507136714001424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouqh_wIMs3lsnaT5aEEEXv0DwoJ6HNJ1q1rVdkirsvzdlVdSDYSCEmfedzDOMHXDIOXB9PM_Dsg-5AC5zKHMAucEmAsoik1rCJptwBSbjhTY7bD_GOYzHgFBmm-0IpQqlTDVhR-erONiuoTCltiU3xGl6TYNtfD88U7DL1R7bau0i0v7nvcseLy8eZtfZ7d3VzezsNnNawZBZMo0WBK6SSgsntCmodQApRF3VKWtKYYra6MoaLoUzJNNvFBQ1WBBU7LLTte_yrX6lxlE3BLvAZfCvNqywtx5_Zzr_jE_9O0qhS1WVyUCsDVzoYwzUfms54AgN5zhCwxEaQokJWhId_uz6LflClApO1gWUZn_3FDA6T52jxofEC5ve_-9_-kfuFr7zzi5eaEVx3r-FLlFFjlEg4P24tnFrXEJyEbL4AONpkjc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bystander effects and radiotherapy</title><source>Access via ScienceDirect (Elsevier)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Marín, Alicia ; Martín, Margarita ; Liñán, Olga ; Alvarenga, Felipe ; López, Mario ; Fernández, Laura ; Büchser, David ; Cerezo, Laura</creator><creatorcontrib>Marín, Alicia ; Martín, Margarita ; Liñán, Olga ; Alvarenga, Felipe ; López, Mario ; Fernández, Laura ; Büchser, David ; Cerezo, Laura</creatorcontrib><description>Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.</description><identifier>ISSN: 1507-1367</identifier><identifier>EISSN: 2083-4640</identifier><identifier>DOI: 10.1016/j.rpor.2014.08.004</identifier><identifier>PMID: 25535579</identifier><language>eng</language><publisher>Netherlands: Elsevier Urban &amp; Partner Sp. z.o.o</publisher><subject>Adaptive response ; Bystander effect ; Fractionated radiotherapy ; Hematology, Oncology and Palliative Medicine ; IMRT ; Radiology ; Radiotherapy ; Review</subject><ispartof>Reports of practical oncology and radiotherapy, 2015-01, Vol.20 (1), p.12-21</ispartof><rights>Greater Poland Cancer Centre</rights><rights>2014 Greater Poland Cancer Centre</rights><rights>2015 Greater Poland Cancer Centre. Published by Elsevier Urban &amp; Partner Sp. z o.o. All rights reserved. 2014 Greater Poland Cancer Centre</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</citedby><cites>FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</cites><orcidid>0000-0002-8052-0895 ; 0000-0002-8070-3595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268598/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rpor.2014.08.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25535579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marín, Alicia</creatorcontrib><creatorcontrib>Martín, Margarita</creatorcontrib><creatorcontrib>Liñán, Olga</creatorcontrib><creatorcontrib>Alvarenga, Felipe</creatorcontrib><creatorcontrib>López, Mario</creatorcontrib><creatorcontrib>Fernández, Laura</creatorcontrib><creatorcontrib>Büchser, David</creatorcontrib><creatorcontrib>Cerezo, Laura</creatorcontrib><title>Bystander effects and radiotherapy</title><title>Reports of practical oncology and radiotherapy</title><addtitle>Rep Pract Oncol Radiother</addtitle><description>Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.</description><subject>Adaptive response</subject><subject>Bystander effect</subject><subject>Fractionated radiotherapy</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>IMRT</subject><subject>Radiology</subject><subject>Radiotherapy</subject><subject>Review</subject><issn>1507-1367</issn><issn>2083-4640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouqh_wIMs3lsnaT5aEEEXv0DwoJ6HNJ1q1rVdkirsvzdlVdSDYSCEmfedzDOMHXDIOXB9PM_Dsg-5AC5zKHMAucEmAsoik1rCJptwBSbjhTY7bD_GOYzHgFBmm-0IpQqlTDVhR-erONiuoTCltiU3xGl6TYNtfD88U7DL1R7bau0i0v7nvcseLy8eZtfZ7d3VzezsNnNawZBZMo0WBK6SSgsntCmodQApRF3VKWtKYYra6MoaLoUzJNNvFBQ1WBBU7LLTte_yrX6lxlE3BLvAZfCvNqywtx5_Zzr_jE_9O0qhS1WVyUCsDVzoYwzUfms54AgN5zhCwxEaQokJWhId_uz6LflClApO1gWUZn_3FDA6T52jxofEC5ve_-9_-kfuFr7zzi5eaEVx3r-FLlFFjlEg4P24tnFrXEJyEbL4AONpkjc</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Marín, Alicia</creator><creator>Martín, Margarita</creator><creator>Liñán, Olga</creator><creator>Alvarenga, Felipe</creator><creator>López, Mario</creator><creator>Fernández, Laura</creator><creator>Büchser, David</creator><creator>Cerezo, Laura</creator><general>Elsevier Urban &amp; Partner Sp. z.o.o</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8052-0895</orcidid><orcidid>https://orcid.org/0000-0002-8070-3595</orcidid></search><sort><creationdate>20150101</creationdate><title>Bystander effects and radiotherapy</title><author>Marín, Alicia ; Martín, Margarita ; Liñán, Olga ; Alvarenga, Felipe ; López, Mario ; Fernández, Laura ; Büchser, David ; Cerezo, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-ae7d62e0c94562c2673efc00c002b9be7d78273b769a7142c7e4257503b0a02e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive response</topic><topic>Bystander effect</topic><topic>Fractionated radiotherapy</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>IMRT</topic><topic>Radiology</topic><topic>Radiotherapy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marín, Alicia</creatorcontrib><creatorcontrib>Martín, Margarita</creatorcontrib><creatorcontrib>Liñán, Olga</creatorcontrib><creatorcontrib>Alvarenga, Felipe</creatorcontrib><creatorcontrib>López, Mario</creatorcontrib><creatorcontrib>Fernández, Laura</creatorcontrib><creatorcontrib>Büchser, David</creatorcontrib><creatorcontrib>Cerezo, Laura</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Reports of practical oncology and radiotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marín, Alicia</au><au>Martín, Margarita</au><au>Liñán, Olga</au><au>Alvarenga, Felipe</au><au>López, Mario</au><au>Fernández, Laura</au><au>Büchser, David</au><au>Cerezo, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bystander effects and radiotherapy</atitle><jtitle>Reports of practical oncology and radiotherapy</jtitle><addtitle>Rep Pract Oncol Radiother</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>20</volume><issue>1</issue><spage>12</spage><epage>21</epage><pages>12-21</pages><issn>1507-1367</issn><eissn>2083-4640</eissn><abstract>Abstract Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.</abstract><cop>Netherlands</cop><pub>Elsevier Urban &amp; Partner Sp. z.o.o</pub><pmid>25535579</pmid><doi>10.1016/j.rpor.2014.08.004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8052-0895</orcidid><orcidid>https://orcid.org/0000-0002-8070-3595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1507-1367
ispartof Reports of practical oncology and radiotherapy, 2015-01, Vol.20 (1), p.12-21
issn 1507-1367
2083-4640
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268598
source Access via ScienceDirect (Elsevier); Free E-Journal (出版社公開部分のみ); DOAJ Directory of Open Access Journals; PubMed Central
subjects Adaptive response
Bystander effect
Fractionated radiotherapy
Hematology, Oncology and Palliative Medicine
IMRT
Radiology
Radiotherapy
Review
title Bystander effects and radiotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bystander%20effects%20and%20radiotherapy&rft.jtitle=Reports%20of%20practical%20oncology%20and%20radiotherapy&rft.au=Mar%C3%ADn,%20Alicia&rft.date=2015-01-01&rft.volume=20&rft.issue=1&rft.spage=12&rft.epage=21&rft.pages=12-21&rft.issn=1507-1367&rft.eissn=2083-4640&rft_id=info:doi/10.1016/j.rpor.2014.08.004&rft_dat=%3Celsevier_pubme%3E1_s2_0_S1507136714001424%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25535579&rft_els_id=1_s2_0_S1507136714001424&rfr_iscdi=true