An integrated modeling approach to estimating Gunnison sage‐grouse population dynamics: combining index and demographic data
Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack con...
Gespeichert in:
Veröffentlicht in: | Ecology and evolution 2014-11, Vol.4 (22), p.4247-4257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4257 |
---|---|
container_issue | 22 |
container_start_page | 4247 |
container_title | Ecology and evolution |
container_volume | 4 |
creator | Davis, Amy J. Hooten, Mevin B. Phillips, Michael L. Doherty, Paul F. |
description | Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years.
This manuscript presents an innovative approach for combining short‐term, field‐intensive demographic information with long‐term, less costly index data based on counts through integrated hierarchical modelling. We show that the combination of index data with stronger, demographic data results in a better understanding of long‐term population trends for the proposed endangered species Gunnison Sage‐Grouse (Centrocercus minimus). |
doi_str_mv | 10.1002/ece3.1290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1640688411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-145e5329336356da2f95edb27616274654a7e37e107e3e124931329fd976d9b63</originalsourceid><addsrcrecordid>eNp1kctuEzEUhi0EolXpghdAltjAIq3vzrBAqqJQkCqxgbXl2CcTVzP2YM8A2VR9BJ6RJ8FDSlWQ8OZYPp__c_kRek7JGSWEnYMDfkZZQx6hY0aEXGgtl48f3I_QaSnXpB5FmCD6KTpiUgqilvoY3VxEHOIIbbYjeNwnD12ILbbDkJN1OzwmDGUMvR3n58spxlBSxMW28PP2R5vTVAAPaZi6StSE30fbB1feYJf6TYjzrxA9fMc2euyhT7XUsAsOezvaZ-jJ1nYFTu_iCfr8bv1p9X5x9fHyw-riauGE4GRBhQTJWcO54lJ5y7aNBL9hWlHFtFBSWA1cAyU1AGWi4bTiW99o5ZuN4ifo7UF3mDY9eAdxzLYzQ66D5b1JNpi_MzHsTJu-GsGUXipRBV7dCeT0ZaobMX0oDrrORqgrMFTNC10KSiv68h_0Ok051vEMqzYJIVSjK_X6QLmcSsmwvW-GEjMba2ZjzWxsZV887P6e_GNjBc4PwLfQwf7_Sma9WvPfkr8AQPKutg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290444697</pqid></control><display><type>article</type><title>An integrated modeling approach to estimating Gunnison sage‐grouse population dynamics: combining index and demographic data</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Davis, Amy J. ; Hooten, Mevin B. ; Phillips, Michael L. ; Doherty, Paul F.</creator><creatorcontrib>Davis, Amy J. ; Hooten, Mevin B. ; Phillips, Michael L. ; Doherty, Paul F.</creatorcontrib><description>Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years.
This manuscript presents an innovative approach for combining short‐term, field‐intensive demographic information with long‐term, less costly index data based on counts through integrated hierarchical modelling. We show that the combination of index data with stronger, demographic data results in a better understanding of long‐term population trends for the proposed endangered species Gunnison Sage‐Grouse (Centrocercus minimus).</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.1290</identifier><identifier>PMID: 25540687</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Bayesian ; Bayesian analysis ; Bias ; Birds ; Centrocercus minimus ; Demographics ; Economic models ; Endangered & extinct species ; Estimates ; Growth rate ; integrated population model ; lek counts ; Leslie transition matrix ; Males ; Methods ; Original Research ; Population decline ; Population dynamics ; Population growth ; population projection ; Rare species ; Sampling ; Sampling methods ; Studies ; Wildfowl</subject><ispartof>Ecology and evolution, 2014-11, Vol.4 (22), p.4247-4257</ispartof><rights>2014 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2014. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 The Authors. published by John Wiley & Sons Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-145e5329336356da2f95edb27616274654a7e37e107e3e124931329fd976d9b63</citedby><cites>FETCH-LOGICAL-c4430-145e5329336356da2f95edb27616274654a7e37e107e3e124931329fd976d9b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267864/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267864/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25540687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, Amy J.</creatorcontrib><creatorcontrib>Hooten, Mevin B.</creatorcontrib><creatorcontrib>Phillips, Michael L.</creatorcontrib><creatorcontrib>Doherty, Paul F.</creatorcontrib><title>An integrated modeling approach to estimating Gunnison sage‐grouse population dynamics: combining index and demographic data</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years.
This manuscript presents an innovative approach for combining short‐term, field‐intensive demographic information with long‐term, less costly index data based on counts through integrated hierarchical modelling. We show that the combination of index data with stronger, demographic data results in a better understanding of long‐term population trends for the proposed endangered species Gunnison Sage‐Grouse (Centrocercus minimus).</description><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Birds</subject><subject>Centrocercus minimus</subject><subject>Demographics</subject><subject>Economic models</subject><subject>Endangered & extinct species</subject><subject>Estimates</subject><subject>Growth rate</subject><subject>integrated population model</subject><subject>lek counts</subject><subject>Leslie transition matrix</subject><subject>Males</subject><subject>Methods</subject><subject>Original Research</subject><subject>Population decline</subject><subject>Population dynamics</subject><subject>Population growth</subject><subject>population projection</subject><subject>Rare species</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Studies</subject><subject>Wildfowl</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctuEzEUhi0EolXpghdAltjAIq3vzrBAqqJQkCqxgbXl2CcTVzP2YM8A2VR9BJ6RJ8FDSlWQ8OZYPp__c_kRek7JGSWEnYMDfkZZQx6hY0aEXGgtl48f3I_QaSnXpB5FmCD6KTpiUgqilvoY3VxEHOIIbbYjeNwnD12ILbbDkJN1OzwmDGUMvR3n58spxlBSxMW28PP2R5vTVAAPaZi6StSE30fbB1feYJf6TYjzrxA9fMc2euyhT7XUsAsOezvaZ-jJ1nYFTu_iCfr8bv1p9X5x9fHyw-riauGE4GRBhQTJWcO54lJ5y7aNBL9hWlHFtFBSWA1cAyU1AGWi4bTiW99o5ZuN4ifo7UF3mDY9eAdxzLYzQ66D5b1JNpi_MzHsTJu-GsGUXipRBV7dCeT0ZaobMX0oDrrORqgrMFTNC10KSiv68h_0Ok051vEMqzYJIVSjK_X6QLmcSsmwvW-GEjMba2ZjzWxsZV887P6e_GNjBc4PwLfQwf7_Sma9WvPfkr8AQPKutg</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Davis, Amy J.</creator><creator>Hooten, Mevin B.</creator><creator>Phillips, Michael L.</creator><creator>Doherty, Paul F.</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201411</creationdate><title>An integrated modeling approach to estimating Gunnison sage‐grouse population dynamics: combining index and demographic data</title><author>Davis, Amy J. ; Hooten, Mevin B. ; Phillips, Michael L. ; Doherty, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-145e5329336356da2f95edb27616274654a7e37e107e3e124931329fd976d9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Birds</topic><topic>Centrocercus minimus</topic><topic>Demographics</topic><topic>Economic models</topic><topic>Endangered & extinct species</topic><topic>Estimates</topic><topic>Growth rate</topic><topic>integrated population model</topic><topic>lek counts</topic><topic>Leslie transition matrix</topic><topic>Males</topic><topic>Methods</topic><topic>Original Research</topic><topic>Population decline</topic><topic>Population dynamics</topic><topic>Population growth</topic><topic>population projection</topic><topic>Rare species</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Studies</topic><topic>Wildfowl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Amy J.</creatorcontrib><creatorcontrib>Hooten, Mevin B.</creatorcontrib><creatorcontrib>Phillips, Michael L.</creatorcontrib><creatorcontrib>Doherty, Paul F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Amy J.</au><au>Hooten, Mevin B.</au><au>Phillips, Michael L.</au><au>Doherty, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated modeling approach to estimating Gunnison sage‐grouse population dynamics: combining index and demographic data</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>4</volume><issue>22</issue><spage>4247</spage><epage>4257</epage><pages>4247-4257</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years.
This manuscript presents an innovative approach for combining short‐term, field‐intensive demographic information with long‐term, less costly index data based on counts through integrated hierarchical modelling. We show that the combination of index data with stronger, demographic data results in a better understanding of long‐term population trends for the proposed endangered species Gunnison Sage‐Grouse (Centrocercus minimus).</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>25540687</pmid><doi>10.1002/ece3.1290</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7758 |
ispartof | Ecology and evolution, 2014-11, Vol.4 (22), p.4247-4257 |
issn | 2045-7758 2045-7758 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267864 |
source | DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bayesian Bayesian analysis Bias Birds Centrocercus minimus Demographics Economic models Endangered & extinct species Estimates Growth rate integrated population model lek counts Leslie transition matrix Males Methods Original Research Population decline Population dynamics Population growth population projection Rare species Sampling Sampling methods Studies Wildfowl |
title | An integrated modeling approach to estimating Gunnison sage‐grouse population dynamics: combining index and demographic data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20modeling%20approach%20to%20estimating%20Gunnison%20sage%E2%80%90grouse%20population%20dynamics:%20combining%20index%20and%20demographic%20data&rft.jtitle=Ecology%20and%20evolution&rft.au=Davis,%20Amy%20J.&rft.date=2014-11&rft.volume=4&rft.issue=22&rft.spage=4247&rft.epage=4257&rft.pages=4247-4257&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.1290&rft_dat=%3Cproquest_pubme%3E1640688411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290444697&rft_id=info:pmid/25540687&rfr_iscdi=true |