Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α

In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called 'stalk'. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2014-12, Vol.42 (22), p.14042-14052
Hauptverfasser: Ito, Kosuke, Honda, Takayoshi, Suzuki, Takahiro, Miyoshi, Tomohiro, Murakami, Ryo, Yao, Min, Uchiumi, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14052
container_issue 22
container_start_page 14042
container_title Nucleic acids research
container_volume 42
creator Ito, Kosuke
Honda, Takayoshi
Suzuki, Takahiro
Miyoshi, Tomohiro
Murakami, Ryo
Yao, Min
Uchiumi, Toshio
description In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called 'stalk'. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.
doi_str_mv 10.1093/nar/gku1248
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1637995189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-c188a905f65db1f3f780baf5af95570a363699bdc6ee66ff59e470b2c6e309423</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMoWqsr9zJLQUZzn2QjSPEGihtdh8w0aaPppCYZxcfyRXwmp7UWXbk6t-_8nMMPwAGCJwhKctrqeDp57hCmYgMMEOG4pJLjTTCABLISQSp2wG5KTxAiihjdBjuYUSwIFQOg74I3Ted1LFyb3GSaU5_kUOSpWSQm6ia70BbBLlvR1SGFmfZFyto_F_MYsnFt8ebytDA-tBO9xG2_FmKBPj_2wJbVPpn9VRyCx8uLh9F1eXt_dTM6vy0bimguGySElpBZzsY1ssRWAtbaMm0lYxXUhBMuZT1uuDGcW8ukoRWscV8TKCkmQ3D2rTvv6pkZN6bNUXs1j26m47sK2qm_k9ZN1SS8Kop5xZnsBY5WAjG8dCZlNXOpMd7r1oQuKSSg4FJgJv5HOamkZEgsVI-_0SaGlKKx64sQVAv_VO-fWvnX04e_n1izP4aRL6QHmmI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637995189</pqid></control><display><type>article</type><title>Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ito, Kosuke ; Honda, Takayoshi ; Suzuki, Takahiro ; Miyoshi, Tomohiro ; Murakami, Ryo ; Yao, Min ; Uchiumi, Toshio</creator><creatorcontrib>Ito, Kosuke ; Honda, Takayoshi ; Suzuki, Takahiro ; Miyoshi, Tomohiro ; Murakami, Ryo ; Yao, Min ; Uchiumi, Toshio</creatorcontrib><description>In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called 'stalk'. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku1248</identifier><identifier>PMID: 25428348</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Substitution ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Guanosine Triphosphate - metabolism ; Models, Molecular ; Peptide Elongation Factor 1 - chemistry ; Peptide Elongation Factor 1 - metabolism ; Phosphoproteins - chemistry ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Protein Binding ; Protein Structure, Tertiary ; Pyrococcus horikoshii ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; RNA, Transfer, Amino Acyl - metabolism ; Structural Biology</subject><ispartof>Nucleic acids research, 2014-12, Vol.42 (22), p.14042-14052</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-c188a905f65db1f3f780baf5af95570a363699bdc6ee66ff59e470b2c6e309423</citedby><cites>FETCH-LOGICAL-c414t-c188a905f65db1f3f780baf5af95570a363699bdc6ee66ff59e470b2c6e309423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267659/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267659/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25428348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Kosuke</creatorcontrib><creatorcontrib>Honda, Takayoshi</creatorcontrib><creatorcontrib>Suzuki, Takahiro</creatorcontrib><creatorcontrib>Miyoshi, Tomohiro</creatorcontrib><creatorcontrib>Murakami, Ryo</creatorcontrib><creatorcontrib>Yao, Min</creatorcontrib><creatorcontrib>Uchiumi, Toshio</creatorcontrib><title>Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called 'stalk'. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.</description><subject>Amino Acid Substitution</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Models, Molecular</subject><subject>Peptide Elongation Factor 1 - chemistry</subject><subject>Peptide Elongation Factor 1 - metabolism</subject><subject>Phosphoproteins - chemistry</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Pyrococcus horikoshii</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctKAzEUhoMoWqsr9zJLQUZzn2QjSPEGihtdh8w0aaPppCYZxcfyRXwmp7UWXbk6t-_8nMMPwAGCJwhKctrqeDp57hCmYgMMEOG4pJLjTTCABLISQSp2wG5KTxAiihjdBjuYUSwIFQOg74I3Ted1LFyb3GSaU5_kUOSpWSQm6ia70BbBLlvR1SGFmfZFyto_F_MYsnFt8ebytDA-tBO9xG2_FmKBPj_2wJbVPpn9VRyCx8uLh9F1eXt_dTM6vy0bimguGySElpBZzsY1ssRWAtbaMm0lYxXUhBMuZT1uuDGcW8ukoRWscV8TKCkmQ3D2rTvv6pkZN6bNUXs1j26m47sK2qm_k9ZN1SS8Kop5xZnsBY5WAjG8dCZlNXOpMd7r1oQuKSSg4FJgJv5HOamkZEgsVI-_0SaGlKKx64sQVAv_VO-fWvnX04e_n1izP4aRL6QHmmI</recordid><startdate>20141216</startdate><enddate>20141216</enddate><creator>Ito, Kosuke</creator><creator>Honda, Takayoshi</creator><creator>Suzuki, Takahiro</creator><creator>Miyoshi, Tomohiro</creator><creator>Murakami, Ryo</creator><creator>Yao, Min</creator><creator>Uchiumi, Toshio</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20141216</creationdate><title>Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α</title><author>Ito, Kosuke ; Honda, Takayoshi ; Suzuki, Takahiro ; Miyoshi, Tomohiro ; Murakami, Ryo ; Yao, Min ; Uchiumi, Toshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-c188a905f65db1f3f780baf5af95570a363699bdc6ee66ff59e470b2c6e309423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Substitution</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Models, Molecular</topic><topic>Peptide Elongation Factor 1 - chemistry</topic><topic>Peptide Elongation Factor 1 - metabolism</topic><topic>Phosphoproteins - chemistry</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Pyrococcus horikoshii</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Kosuke</creatorcontrib><creatorcontrib>Honda, Takayoshi</creatorcontrib><creatorcontrib>Suzuki, Takahiro</creatorcontrib><creatorcontrib>Miyoshi, Tomohiro</creatorcontrib><creatorcontrib>Murakami, Ryo</creatorcontrib><creatorcontrib>Yao, Min</creatorcontrib><creatorcontrib>Uchiumi, Toshio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Kosuke</au><au>Honda, Takayoshi</au><au>Suzuki, Takahiro</au><au>Miyoshi, Tomohiro</au><au>Murakami, Ryo</au><au>Yao, Min</au><au>Uchiumi, Toshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-12-16</date><risdate>2014</risdate><volume>42</volume><issue>22</issue><spage>14042</spage><epage>14052</epage><pages>14042-14052</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called 'stalk'. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25428348</pmid><doi>10.1093/nar/gku1248</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2014-12, Vol.42 (22), p.14042-14052
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267659
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Archaeal Proteins - chemistry
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
Guanosine Triphosphate - metabolism
Models, Molecular
Peptide Elongation Factor 1 - chemistry
Peptide Elongation Factor 1 - metabolism
Phosphoproteins - chemistry
Phosphoproteins - genetics
Phosphoproteins - metabolism
Protein Binding
Protein Structure, Tertiary
Pyrococcus horikoshii
Ribosomal Proteins - chemistry
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
RNA, Transfer, Amino Acyl - metabolism
Structural Biology
title Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20insights%20into%20the%20interaction%20of%20the%20ribosomal%20stalk%20protein%20with%20elongation%20factor%201%CE%B1&rft.jtitle=Nucleic%20acids%20research&rft.au=Ito,%20Kosuke&rft.date=2014-12-16&rft.volume=42&rft.issue=22&rft.spage=14042&rft.epage=14052&rft.pages=14042-14052&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku1248&rft_dat=%3Cproquest_pubme%3E1637995189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1637995189&rft_id=info:pmid/25428348&rfr_iscdi=true