Genetic architecture supports mosaic brain evolution and independent brain–body size regulation
The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve indepen...
Gespeichert in:
Veröffentlicht in: | Nature communications 2012, Vol.3 (1), p.1079-1079, Article 1079 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1079 |
---|---|
container_issue | 1 |
container_start_page | 1079 |
container_title | Nature communications |
container_volume | 3 |
creator | Hager, Reinmar Lu, Lu Rosen, Glenn D. Williams, Robert W. |
description | The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental constraints. Here we test these hypotheses using a quantitative genetic approach involving over 10,000 mice. We identify independent loci for size variation in seven key parts of the brain, and observe that brain parts show low or no phenotypic correlation, as is predicted by a mosaic scenario. We also demonstrate that variation in brain size is independently regulated from body size. The allometric relations seen at higher phylogenetic levels are thus unlikely to be the product of strong developmental constraints.
It has been controversial whether the sizes of different regions of the brain can evolve independently of each other. This study identifies genetic loci responsible for independent size regulation in different brain regions, and finds brain size to be regulated independently of body size. |
doi_str_mv | 10.1038/ncomms2086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080883837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-f1e6f5bbcf17b12dae9f934d03f3c6446b5368cedd9cefd856807277bba083df3</originalsourceid><addsrcrecordid>eNplkctKxDAYhYMoKurGB5CCG1FGk6aXdCOIeAPBja5DLn_GSJvUpBXGle_gG_okRsbLqFkkgfNx_vNzENom-JBgyo6c8l0Xc8yqJbSe44JMSJ3T5YX_GtqK8QGnQxvCimIVreUUE0IoXUfiAhwMVmUiqHs7gBrGAFkc-96HIWadjyKJMgjrMnjy7ThY7zLhdGadhh7S5Ya5_vbyKr2eZdE-QxZgOrbiA95EK0a0EbY-3w10d352e3o5ub65uDo9uZ6oErNhYghUppRSGVJLkmsBjWlooTE1VFVFUcmSVkyB1o0Co1lZMVzndS2lwIxqQzfQ8dy3H2UHWqVcQbS8D7YTYca9sPy34uw9n_onXuRVXZZlMtj7NAj-cYQ48M5GBW0rHPgxcoIZZowyWid09w_64Mfg0nqJqpq0UMFwovbnlAo-xgDmOwzB_KM8_lNegncW43-jX1Ul4GAOxCS5KYTFmf_s3gHbkqjk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069508480</pqid></control><display><type>article</type><title>Genetic architecture supports mosaic brain evolution and independent brain–body size regulation</title><source>Springer Nature OA Free Journals</source><creator>Hager, Reinmar ; Lu, Lu ; Rosen, Glenn D. ; Williams, Robert W.</creator><creatorcontrib>Hager, Reinmar ; Lu, Lu ; Rosen, Glenn D. ; Williams, Robert W.</creatorcontrib><description>The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental constraints. Here we test these hypotheses using a quantitative genetic approach involving over 10,000 mice. We identify independent loci for size variation in seven key parts of the brain, and observe that brain parts show low or no phenotypic correlation, as is predicted by a mosaic scenario. We also demonstrate that variation in brain size is independently regulated from body size. The allometric relations seen at higher phylogenetic levels are thus unlikely to be the product of strong developmental constraints.
It has been controversial whether the sizes of different regions of the brain can evolve independently of each other. This study identifies genetic loci responsible for independent size regulation in different brain regions, and finds brain size to be regulated independently of body size.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2086</identifier><identifier>PMID: 23011133</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/181/757 ; 692/698/1688/64 ; Animals ; Biological Evolution ; Body Size - genetics ; Body Size - physiology ; Brain - anatomy & histology ; Brain - metabolism ; Humanities and Social Sciences ; Mice ; multidisciplinary ; Organ Size - genetics ; Organ Size - physiology ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2012, Vol.3 (1), p.1079-1079, Article 1079</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Sep 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-f1e6f5bbcf17b12dae9f934d03f3c6446b5368cedd9cefd856807277bba083df3</citedby><cites>FETCH-LOGICAL-c508t-f1e6f5bbcf17b12dae9f934d03f3c6446b5368cedd9cefd856807277bba083df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267555/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,27904,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms2086$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23011133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hager, Reinmar</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Rosen, Glenn D.</creatorcontrib><creatorcontrib>Williams, Robert W.</creatorcontrib><title>Genetic architecture supports mosaic brain evolution and independent brain–body size regulation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental constraints. Here we test these hypotheses using a quantitative genetic approach involving over 10,000 mice. We identify independent loci for size variation in seven key parts of the brain, and observe that brain parts show low or no phenotypic correlation, as is predicted by a mosaic scenario. We also demonstrate that variation in brain size is independently regulated from body size. The allometric relations seen at higher phylogenetic levels are thus unlikely to be the product of strong developmental constraints.
It has been controversial whether the sizes of different regions of the brain can evolve independently of each other. This study identifies genetic loci responsible for independent size regulation in different brain regions, and finds brain size to be regulated independently of body size.</description><subject>631/181/757</subject><subject>692/698/1688/64</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Body Size - genetics</subject><subject>Body Size - physiology</subject><subject>Brain - anatomy & histology</subject><subject>Brain - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Organ Size - genetics</subject><subject>Organ Size - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkctKxDAYhYMoKurGB5CCG1FGk6aXdCOIeAPBja5DLn_GSJvUpBXGle_gG_okRsbLqFkkgfNx_vNzENom-JBgyo6c8l0Xc8yqJbSe44JMSJ3T5YX_GtqK8QGnQxvCimIVreUUE0IoXUfiAhwMVmUiqHs7gBrGAFkc-96HIWadjyKJMgjrMnjy7ThY7zLhdGadhh7S5Ya5_vbyKr2eZdE-QxZgOrbiA95EK0a0EbY-3w10d352e3o5ub65uDo9uZ6oErNhYghUppRSGVJLkmsBjWlooTE1VFVFUcmSVkyB1o0Co1lZMVzndS2lwIxqQzfQ8dy3H2UHWqVcQbS8D7YTYca9sPy34uw9n_onXuRVXZZlMtj7NAj-cYQ48M5GBW0rHPgxcoIZZowyWid09w_64Mfg0nqJqpq0UMFwovbnlAo-xgDmOwzB_KM8_lNegncW43-jX1Ul4GAOxCS5KYTFmf_s3gHbkqjk</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Hager, Reinmar</creator><creator>Lu, Lu</creator><creator>Rosen, Glenn D.</creator><creator>Williams, Robert W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2012</creationdate><title>Genetic architecture supports mosaic brain evolution and independent brain–body size regulation</title><author>Hager, Reinmar ; Lu, Lu ; Rosen, Glenn D. ; Williams, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-f1e6f5bbcf17b12dae9f934d03f3c6446b5368cedd9cefd856807277bba083df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/181/757</topic><topic>692/698/1688/64</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Body Size - genetics</topic><topic>Body Size - physiology</topic><topic>Brain - anatomy & histology</topic><topic>Brain - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Organ Size - genetics</topic><topic>Organ Size - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hager, Reinmar</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Rosen, Glenn D.</creatorcontrib><creatorcontrib>Williams, Robert W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hager, Reinmar</au><au>Lu, Lu</au><au>Rosen, Glenn D.</au><au>Williams, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic architecture supports mosaic brain evolution and independent brain–body size regulation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>1079</spage><epage>1079</epage><pages>1079-1079</pages><artnum>1079</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental constraints. Here we test these hypotheses using a quantitative genetic approach involving over 10,000 mice. We identify independent loci for size variation in seven key parts of the brain, and observe that brain parts show low or no phenotypic correlation, as is predicted by a mosaic scenario. We also demonstrate that variation in brain size is independently regulated from body size. The allometric relations seen at higher phylogenetic levels are thus unlikely to be the product of strong developmental constraints.
It has been controversial whether the sizes of different regions of the brain can evolve independently of each other. This study identifies genetic loci responsible for independent size regulation in different brain regions, and finds brain size to be regulated independently of body size.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23011133</pmid><doi>10.1038/ncomms2086</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2012, Vol.3 (1), p.1079-1079, Article 1079 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4267555 |
source | Springer Nature OA Free Journals |
subjects | 631/181/757 692/698/1688/64 Animals Biological Evolution Body Size - genetics Body Size - physiology Brain - anatomy & histology Brain - metabolism Humanities and Social Sciences Mice multidisciplinary Organ Size - genetics Organ Size - physiology Science Science (multidisciplinary) |
title | Genetic architecture supports mosaic brain evolution and independent brain–body size regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20architecture%20supports%20mosaic%20brain%20evolution%20and%20independent%20brain%E2%80%93body%20size%20regulation&rft.jtitle=Nature%20communications&rft.au=Hager,%20Reinmar&rft.date=2012&rft.volume=3&rft.issue=1&rft.spage=1079&rft.epage=1079&rft.pages=1079-1079&rft.artnum=1079&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2086&rft_dat=%3Cproquest_C6C%3E1080883837%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069508480&rft_id=info:pmid/23011133&rfr_iscdi=true |