Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta)
Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies o...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2013-12, Vol.22 (23), p.5848-5860 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5860 |
---|---|
container_issue | 23 |
container_start_page | 5848 |
container_title | Molecular ecology |
container_volume | 22 |
creator | Petrou, E. L. Hauser, L. Waples, R. S. Seeb, J. E. Templin, W. D. Gomez-Uchida, D. Seeb, L. W. |
description | Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies of contemporary populations in northern latitudes suggest that nonequilibrium population structure is probably caused by recent colonization of the region after the last Pleistocene ice age ended ~13 000 years ago. The chum salmon's (Oncorhynchus keta) range was fragmented by dramatic environmental changes during the Pleistocene. We investigated the population structure of chum salmon on the North Alaska Peninsula (NAP) and, using both empirical data and simulations, evaluated the effects of colonization timing and founder population heterogeneity on patterns of genetic differentiation. We screened 161 single nucleotide polymorphisms and found evidence of nonequilibrium population structure when the slope of the isolation‐by‐distance relationship was examined at incremental spatial scales. In addition, simulations suggested that this pattern closely matched models of recent colonization of the NAP by secondary contact. Our results agree with geological and archaeological data indicating that the NAP was a dynamic landscape that may have been more recently colonized than during the last deglaciation because of dramatic changes in coastal hydrology over the last several thousand years. |
doi_str_mv | 10.1111/mec.12543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4265302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3136265261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6103-57d815e513b4eff27f95e2d1f99b975f6ebae007ada90b0d43a8ba7416d0a2323</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdR7Fp98AtIQIT2YdpcJnN5KehSW6FawXp5C2cymU7aTLJNMtX9GH5js-52vYBgXk7I_3cuOfyz7CnBBySdw1HJA0J5we5lM8JKntOm-HI_m-GmpDnBNdvJHoVwhTFhlPOH2Q4tCKnTdZZ9_6Cksx34JUoxgowIbIfkAPZSBaRteoYQwaABWh0hybegTbobHZdJ782krFQoDgpZZ9XNlJTW62lEC7eYDETtLArRTzJOXiHXI0ABzOis7tDeuZXOD0srhymgaxVh_3H2oAcT1JNN3M0-vj6-mJ_mZ-cnb-Yvz3JZEsxyXnU14YoT1haq72nVN1zRjvRN0zYV70vVgsK4gg4a3OKuYFC3UBWk7DBQRtludrSuu5jaUXVS2ejBiIXXY9qGcKDFn4rVg7h0t6KgJWd4VWBvU8C7m0mFKEYdpDIGrHJTEKRoaFlQzPH_oLjCBS6LhD7_C71yk7dpE4kqCSt4w0ii9teU9C4Er_rt3ASLlSdE8oT46YnEPvv9o1vyzgQJeLEBIEgwvQcrdfjF1WmyulqNdrjmvmqjlv_uKN4ez-9a5-sMHaL6ts0Afy3KilVcfH53It6ffuIXDFfiFfsB44vfqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461345931</pqid></control><display><type>article</type><title>Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta)</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Petrou, E. L. ; Hauser, L. ; Waples, R. S. ; Seeb, J. E. ; Templin, W. D. ; Gomez-Uchida, D. ; Seeb, L. W.</creator><creatorcontrib>Petrou, E. L. ; Hauser, L. ; Waples, R. S. ; Seeb, J. E. ; Templin, W. D. ; Gomez-Uchida, D. ; Seeb, L. W.</creatorcontrib><description>Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies of contemporary populations in northern latitudes suggest that nonequilibrium population structure is probably caused by recent colonization of the region after the last Pleistocene ice age ended ~13 000 years ago. The chum salmon's (Oncorhynchus keta) range was fragmented by dramatic environmental changes during the Pleistocene. We investigated the population structure of chum salmon on the North Alaska Peninsula (NAP) and, using both empirical data and simulations, evaluated the effects of colonization timing and founder population heterogeneity on patterns of genetic differentiation. We screened 161 single nucleotide polymorphisms and found evidence of nonequilibrium population structure when the slope of the isolation‐by‐distance relationship was examined at incremental spatial scales. In addition, simulations suggested that this pattern closely matched models of recent colonization of the NAP by secondary contact. Our results agree with geological and archaeological data indicating that the NAP was a dynamic landscape that may have been more recently colonized than during the last deglaciation because of dramatic changes in coastal hydrology over the last several thousand years.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.12543</identifier><identifier>PMID: 24118255</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Alaska ; Animal populations ; Animals ; Bioavailability ; Biological and medical sciences ; Biological Evolution ; chum salmon ; Coastal plains ; Computer Simulation ; Ecosystem ; Equilibrium ; Fundamental and applied biological sciences. Psychology ; Gene Frequency ; Genetic Drift ; Genetics of eukaryotes. Biological and molecular evolution ; Genetics, Population ; Genotype ; glaciation ; Habitats ; isolation by distance ; Models, Genetic ; Oncorhynchus keta ; Oncorhynchus keta - genetics ; Original ; Polymorphism, Single Nucleotide ; Population Density ; population genetics ; Population genetics, reproduction patterns ; Salmon ; single nucleotide polymorphisms</subject><ispartof>Molecular ecology, 2013-12, Vol.22 (23), p.5848-5860</ispartof><rights>2013 The Authors Molecular Ecology Published by John Wiley & Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons Ltd</rights><rights>2013 The Authors Molecular Ecology Published by John Wiley & Sons Ltd 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6103-57d815e513b4eff27f95e2d1f99b975f6ebae007ada90b0d43a8ba7416d0a2323</citedby><cites>FETCH-LOGICAL-c6103-57d815e513b4eff27f95e2d1f99b975f6ebae007ada90b0d43a8ba7416d0a2323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.12543$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.12543$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28040874$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24118255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrou, E. L.</creatorcontrib><creatorcontrib>Hauser, L.</creatorcontrib><creatorcontrib>Waples, R. S.</creatorcontrib><creatorcontrib>Seeb, J. E.</creatorcontrib><creatorcontrib>Templin, W. D.</creatorcontrib><creatorcontrib>Gomez-Uchida, D.</creatorcontrib><creatorcontrib>Seeb, L. W.</creatorcontrib><title>Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta)</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies of contemporary populations in northern latitudes suggest that nonequilibrium population structure is probably caused by recent colonization of the region after the last Pleistocene ice age ended ~13 000 years ago. The chum salmon's (Oncorhynchus keta) range was fragmented by dramatic environmental changes during the Pleistocene. We investigated the population structure of chum salmon on the North Alaska Peninsula (NAP) and, using both empirical data and simulations, evaluated the effects of colonization timing and founder population heterogeneity on patterns of genetic differentiation. We screened 161 single nucleotide polymorphisms and found evidence of nonequilibrium population structure when the slope of the isolation‐by‐distance relationship was examined at incremental spatial scales. In addition, simulations suggested that this pattern closely matched models of recent colonization of the NAP by secondary contact. Our results agree with geological and archaeological data indicating that the NAP was a dynamic landscape that may have been more recently colonized than during the last deglaciation because of dramatic changes in coastal hydrology over the last several thousand years.</description><subject>Alaska</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Bioavailability</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>chum salmon</subject><subject>Coastal plains</subject><subject>Computer Simulation</subject><subject>Ecosystem</subject><subject>Equilibrium</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Frequency</subject><subject>Genetic Drift</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>glaciation</subject><subject>Habitats</subject><subject>isolation by distance</subject><subject>Models, Genetic</subject><subject>Oncorhynchus keta</subject><subject>Oncorhynchus keta - genetics</subject><subject>Original</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population Density</subject><subject>population genetics</subject><subject>Population genetics, reproduction patterns</subject><subject>Salmon</subject><subject>single nucleotide polymorphisms</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkltrFDEUxwdR7Fp98AtIQIT2YdpcJnN5KehSW6FawXp5C2cymU7aTLJNMtX9GH5js-52vYBgXk7I_3cuOfyz7CnBBySdw1HJA0J5we5lM8JKntOm-HI_m-GmpDnBNdvJHoVwhTFhlPOH2Q4tCKnTdZZ9_6Cksx34JUoxgowIbIfkAPZSBaRteoYQwaABWh0hybegTbobHZdJ782krFQoDgpZZ9XNlJTW62lEC7eYDETtLArRTzJOXiHXI0ABzOis7tDeuZXOD0srhymgaxVh_3H2oAcT1JNN3M0-vj6-mJ_mZ-cnb-Yvz3JZEsxyXnU14YoT1haq72nVN1zRjvRN0zYV70vVgsK4gg4a3OKuYFC3UBWk7DBQRtludrSuu5jaUXVS2ejBiIXXY9qGcKDFn4rVg7h0t6KgJWd4VWBvU8C7m0mFKEYdpDIGrHJTEKRoaFlQzPH_oLjCBS6LhD7_C71yk7dpE4kqCSt4w0ii9teU9C4Er_rt3ASLlSdE8oT46YnEPvv9o1vyzgQJeLEBIEgwvQcrdfjF1WmyulqNdrjmvmqjlv_uKN4ez-9a5-sMHaL6ts0Afy3KilVcfH53It6ffuIXDFfiFfsB44vfqQ</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Petrou, E. L.</creator><creator>Hauser, L.</creator><creator>Waples, R. S.</creator><creator>Seeb, J. E.</creator><creator>Templin, W. D.</creator><creator>Gomez-Uchida, D.</creator><creator>Seeb, L. W.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>BlackWell Publishing Ltd</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>201312</creationdate><title>Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta)</title><author>Petrou, E. L. ; Hauser, L. ; Waples, R. S. ; Seeb, J. E. ; Templin, W. D. ; Gomez-Uchida, D. ; Seeb, L. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6103-57d815e513b4eff27f95e2d1f99b975f6ebae007ada90b0d43a8ba7416d0a2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alaska</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Bioavailability</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>chum salmon</topic><topic>Coastal plains</topic><topic>Computer Simulation</topic><topic>Ecosystem</topic><topic>Equilibrium</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Frequency</topic><topic>Genetic Drift</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>glaciation</topic><topic>Habitats</topic><topic>isolation by distance</topic><topic>Models, Genetic</topic><topic>Oncorhynchus keta</topic><topic>Oncorhynchus keta - genetics</topic><topic>Original</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population Density</topic><topic>population genetics</topic><topic>Population genetics, reproduction patterns</topic><topic>Salmon</topic><topic>single nucleotide polymorphisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrou, E. L.</creatorcontrib><creatorcontrib>Hauser, L.</creatorcontrib><creatorcontrib>Waples, R. S.</creatorcontrib><creatorcontrib>Seeb, J. E.</creatorcontrib><creatorcontrib>Templin, W. D.</creatorcontrib><creatorcontrib>Gomez-Uchida, D.</creatorcontrib><creatorcontrib>Seeb, L. W.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrou, E. L.</au><au>Hauser, L.</au><au>Waples, R. S.</au><au>Seeb, J. E.</au><au>Templin, W. D.</au><au>Gomez-Uchida, D.</au><au>Seeb, L. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta)</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2013-12</date><risdate>2013</risdate><volume>22</volume><issue>23</issue><spage>5848</spage><epage>5860</epage><pages>5848-5860</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies of contemporary populations in northern latitudes suggest that nonequilibrium population structure is probably caused by recent colonization of the region after the last Pleistocene ice age ended ~13 000 years ago. The chum salmon's (Oncorhynchus keta) range was fragmented by dramatic environmental changes during the Pleistocene. We investigated the population structure of chum salmon on the North Alaska Peninsula (NAP) and, using both empirical data and simulations, evaluated the effects of colonization timing and founder population heterogeneity on patterns of genetic differentiation. We screened 161 single nucleotide polymorphisms and found evidence of nonequilibrium population structure when the slope of the isolation‐by‐distance relationship was examined at incremental spatial scales. In addition, simulations suggested that this pattern closely matched models of recent colonization of the NAP by secondary contact. Our results agree with geological and archaeological data indicating that the NAP was a dynamic landscape that may have been more recently colonized than during the last deglaciation because of dramatic changes in coastal hydrology over the last several thousand years.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>24118255</pmid><doi>10.1111/mec.12543</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2013-12, Vol.22 (23), p.5848-5860 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4265302 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Alaska Animal populations Animals Bioavailability Biological and medical sciences Biological Evolution chum salmon Coastal plains Computer Simulation Ecosystem Equilibrium Fundamental and applied biological sciences. Psychology Gene Frequency Genetic Drift Genetics of eukaryotes. Biological and molecular evolution Genetics, Population Genotype glaciation Habitats isolation by distance Models, Genetic Oncorhynchus keta Oncorhynchus keta - genetics Original Polymorphism, Single Nucleotide Population Density population genetics Population genetics, reproduction patterns Salmon single nucleotide polymorphisms |
title | Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20contact%20and%20changes%20in%20coastal%20habitat%20availability%20influence%20the%20nonequilibrium%20population%20structure%20of%20a%20salmonid%20(Oncorhynchus%20keta)&rft.jtitle=Molecular%20ecology&rft.au=Petrou,%20E.%20L.&rft.date=2013-12&rft.volume=22&rft.issue=23&rft.spage=5848&rft.epage=5860&rft.pages=5848-5860&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.12543&rft_dat=%3Cproquest_pubme%3E3136265261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461345931&rft_id=info:pmid/24118255&rfr_iscdi=true |