A robust association test for detecting genetic variants with heterogeneous effects

One common strategy for detecting disease-associated genetic markers is to compare the genotype distributions between cases and controls, where cases have been diagnosed as having the disease condition. In a study of a complex disease with a heterogeneous etiology, the sampled case group most likely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biostatistics (Oxford, England) England), 2015-01, Vol.16 (1), p.5-16
Hauptverfasser: Yu, Kai, Zhang, Han, Wheeler, William, Horne, Hisani N, Chen, Jinbo, Figueroa, Jonine D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 5
container_title Biostatistics (Oxford, England)
container_volume 16
creator Yu, Kai
Zhang, Han
Wheeler, William
Horne, Hisani N
Chen, Jinbo
Figueroa, Jonine D
description One common strategy for detecting disease-associated genetic markers is to compare the genotype distributions between cases and controls, where cases have been diagnosed as having the disease condition. In a study of a complex disease with a heterogeneous etiology, the sampled case group most likely consists of people having different disease subtypes. If we conduct an association test by treating all cases as a single group, we maximize our chance of finding genetic risk factors with a homogeneous effect, regardless of the underlying disease etiology. However, this strategy might diminish the power for detecting risk factors whose effect size varies by disease subtype. We propose a robust statistical procedure to identify genetic risk factors that have either a uniform effect for all disease subtypes or heterogeneous effects across different subtypes, in situations where the subtypes are not predefined but can be characterized roughly by a set of clinical and/or pathologic markers. We demonstrate the advantage of the new procedure through numeric simulation studies and an application to a breast cancer study.
doi_str_mv 10.1093/biostatistics/kxu036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4263227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701490704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-396e3c97cfaedafac220cbeb3f24d81d14c1e4f3c9712b0e8c10c3958a840bc43</originalsourceid><addsrcrecordid>eNqFkUtPxCAUhYnR-P4HxpC4cVPlcUvbjYkxvhITF-qaUAoz6ExRoD7-vYwzTtSNKwjnuwcOB6E9So4oafhx63xMKrmYnI7HT-8D4WIFbVIQdQG8rFa_9mUBAmADbcX4SAhjXPB1tMFKUla05pvo7hQH3w4xYRWj1y4b-h4nkw-sD7gzyejk-hEemd7km_CrCk71KeI3l8Z4nPXgZ5ofIjbWZjruoDWrJtHsLtZt9HBxfn92VdzcXl6fnd4UGkSTCt4Iw3VTaatMp6zSjBHdmpZbBl1NOwqaGrAzhLKWmFpTonlT1qoG0mrg2-hk7vs8tFPTadOnoCbyObipCh_SKyd_K70by5F_lcAEZ6zKBocLg-BfhpxZTl3UZjJRX3kkrQiFhlQE_kcFr0ohalFm9OAP-uiH0OefyBRwoJyJJlMwp3TwMQZjl--mRM4Klr8KlvOC89j-z8zLoe9G-SdEgal4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643413269</pqid></control><display><type>article</type><title>A robust association test for detecting genetic variants with heterogeneous effects</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Yu, Kai ; Zhang, Han ; Wheeler, William ; Horne, Hisani N ; Chen, Jinbo ; Figueroa, Jonine D</creator><creatorcontrib>Yu, Kai ; Zhang, Han ; Wheeler, William ; Horne, Hisani N ; Chen, Jinbo ; Figueroa, Jonine D</creatorcontrib><description>One common strategy for detecting disease-associated genetic markers is to compare the genotype distributions between cases and controls, where cases have been diagnosed as having the disease condition. In a study of a complex disease with a heterogeneous etiology, the sampled case group most likely consists of people having different disease subtypes. If we conduct an association test by treating all cases as a single group, we maximize our chance of finding genetic risk factors with a homogeneous effect, regardless of the underlying disease etiology. However, this strategy might diminish the power for detecting risk factors whose effect size varies by disease subtype. We propose a robust statistical procedure to identify genetic risk factors that have either a uniform effect for all disease subtypes or heterogeneous effects across different subtypes, in situations where the subtypes are not predefined but can be characterized roughly by a set of clinical and/or pathologic markers. We demonstrate the advantage of the new procedure through numeric simulation studies and an application to a breast cancer study.</description><identifier>ISSN: 1465-4644</identifier><identifier>EISSN: 1468-4357</identifier><identifier>DOI: 10.1093/biostatistics/kxu036</identifier><identifier>PMID: 25057183</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Breast cancer ; Breast Neoplasms - genetics ; Comparative analysis ; Data Interpretation, Statistical ; Female ; Genetic Markers ; Genetic Variation - genetics ; Genome-Wide Association Study - methods ; Genotype &amp; phenotype ; Humans ; Medical treatment ; Models, Genetic ; Risk Factors ; Simulation</subject><ispartof>Biostatistics (Oxford, England), 2015-01, Vol.16 (1), p.5-16</ispartof><rights>Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><rights>Copyright Oxford Publishing Limited(England) Jan 2015</rights><rights>Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-396e3c97cfaedafac220cbeb3f24d81d14c1e4f3c9712b0e8c10c3958a840bc43</citedby><cites>FETCH-LOGICAL-c469t-396e3c97cfaedafac220cbeb3f24d81d14c1e4f3c9712b0e8c10c3958a840bc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25057183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Wheeler, William</creatorcontrib><creatorcontrib>Horne, Hisani N</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Figueroa, Jonine D</creatorcontrib><title>A robust association test for detecting genetic variants with heterogeneous effects</title><title>Biostatistics (Oxford, England)</title><addtitle>Biostatistics</addtitle><description>One common strategy for detecting disease-associated genetic markers is to compare the genotype distributions between cases and controls, where cases have been diagnosed as having the disease condition. In a study of a complex disease with a heterogeneous etiology, the sampled case group most likely consists of people having different disease subtypes. If we conduct an association test by treating all cases as a single group, we maximize our chance of finding genetic risk factors with a homogeneous effect, regardless of the underlying disease etiology. However, this strategy might diminish the power for detecting risk factors whose effect size varies by disease subtype. We propose a robust statistical procedure to identify genetic risk factors that have either a uniform effect for all disease subtypes or heterogeneous effects across different subtypes, in situations where the subtypes are not predefined but can be characterized roughly by a set of clinical and/or pathologic markers. We demonstrate the advantage of the new procedure through numeric simulation studies and an application to a breast cancer study.</description><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Comparative analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Female</subject><subject>Genetic Markers</subject><subject>Genetic Variation - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Medical treatment</subject><subject>Models, Genetic</subject><subject>Risk Factors</subject><subject>Simulation</subject><issn>1465-4644</issn><issn>1468-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPxCAUhYnR-P4HxpC4cVPlcUvbjYkxvhITF-qaUAoz6ExRoD7-vYwzTtSNKwjnuwcOB6E9So4oafhx63xMKrmYnI7HT-8D4WIFbVIQdQG8rFa_9mUBAmADbcX4SAhjXPB1tMFKUla05pvo7hQH3w4xYRWj1y4b-h4nkw-sD7gzyejk-hEemd7km_CrCk71KeI3l8Z4nPXgZ5ofIjbWZjruoDWrJtHsLtZt9HBxfn92VdzcXl6fnd4UGkSTCt4Iw3VTaatMp6zSjBHdmpZbBl1NOwqaGrAzhLKWmFpTonlT1qoG0mrg2-hk7vs8tFPTadOnoCbyObipCh_SKyd_K70by5F_lcAEZ6zKBocLg-BfhpxZTl3UZjJRX3kkrQiFhlQE_kcFr0ohalFm9OAP-uiH0OefyBRwoJyJJlMwp3TwMQZjl--mRM4Klr8KlvOC89j-z8zLoe9G-SdEgal4</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Yu, Kai</creator><creator>Zhang, Han</creator><creator>Wheeler, William</creator><creator>Horne, Hisani N</creator><creator>Chen, Jinbo</creator><creator>Figueroa, Jonine D</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>A robust association test for detecting genetic variants with heterogeneous effects</title><author>Yu, Kai ; Zhang, Han ; Wheeler, William ; Horne, Hisani N ; Chen, Jinbo ; Figueroa, Jonine D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-396e3c97cfaedafac220cbeb3f24d81d14c1e4f3c9712b0e8c10c3958a840bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Comparative analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Female</topic><topic>Genetic Markers</topic><topic>Genetic Variation - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Medical treatment</topic><topic>Models, Genetic</topic><topic>Risk Factors</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Wheeler, William</creatorcontrib><creatorcontrib>Horne, Hisani N</creatorcontrib><creatorcontrib>Chen, Jinbo</creatorcontrib><creatorcontrib>Figueroa, Jonine D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biostatistics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kai</au><au>Zhang, Han</au><au>Wheeler, William</au><au>Horne, Hisani N</au><au>Chen, Jinbo</au><au>Figueroa, Jonine D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust association test for detecting genetic variants with heterogeneous effects</atitle><jtitle>Biostatistics (Oxford, England)</jtitle><addtitle>Biostatistics</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>5</spage><epage>16</epage><pages>5-16</pages><issn>1465-4644</issn><eissn>1468-4357</eissn><abstract>One common strategy for detecting disease-associated genetic markers is to compare the genotype distributions between cases and controls, where cases have been diagnosed as having the disease condition. In a study of a complex disease with a heterogeneous etiology, the sampled case group most likely consists of people having different disease subtypes. If we conduct an association test by treating all cases as a single group, we maximize our chance of finding genetic risk factors with a homogeneous effect, regardless of the underlying disease etiology. However, this strategy might diminish the power for detecting risk factors whose effect size varies by disease subtype. We propose a robust statistical procedure to identify genetic risk factors that have either a uniform effect for all disease subtypes or heterogeneous effects across different subtypes, in situations where the subtypes are not predefined but can be characterized roughly by a set of clinical and/or pathologic markers. We demonstrate the advantage of the new procedure through numeric simulation studies and an application to a breast cancer study.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>25057183</pmid><doi>10.1093/biostatistics/kxu036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-4644
ispartof Biostatistics (Oxford, England), 2015-01, Vol.16 (1), p.5-16
issn 1465-4644
1468-4357
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4263227
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Breast cancer
Breast Neoplasms - genetics
Comparative analysis
Data Interpretation, Statistical
Female
Genetic Markers
Genetic Variation - genetics
Genome-Wide Association Study - methods
Genotype & phenotype
Humans
Medical treatment
Models, Genetic
Risk Factors
Simulation
title A robust association test for detecting genetic variants with heterogeneous effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20association%20test%20for%20detecting%20genetic%20variants%20with%20heterogeneous%20effects&rft.jtitle=Biostatistics%20(Oxford,%20England)&rft.au=Yu,%20Kai&rft.date=2015-01-01&rft.volume=16&rft.issue=1&rft.spage=5&rft.epage=16&rft.pages=5-16&rft.issn=1465-4644&rft.eissn=1468-4357&rft_id=info:doi/10.1093/biostatistics/kxu036&rft_dat=%3Cproquest_pubme%3E1701490704%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1643413269&rft_id=info:pmid/25057183&rfr_iscdi=true