Casting inorganic structures with DNA molds
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucle...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2014-11, Vol.346 (6210), p.717-717 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 6210 |
container_start_page | 717 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 346 |
creator | Sun, Wei Boulais, Etienne Hakobyan, Yera Li Wang, Wei Guan, Amy Bathe, Mark Yin, Peng |
description | We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. |
doi_str_mv | 10.1126/science.1258361 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4260265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917785</jstor_id><sourcerecordid>24917785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-6b4c6f601063a74b2b343fdc7ba4adcf2cdbefb5ea29fad31fb2a6429ae68bfb3</originalsourceid><addsrcrecordid>eNqFkkuPFCEUhYnROO3o2pWm4mxMTM1weVWxMZm0z2SiG10ToKCbTjWMQGn894PpdnxsZsXifJwL5x6EngI-ByDiotjgonXnQPhIBdxDK8CS95Jgeh-tMKaiH_HAT9CjUnYYN03Sh-iEcIpBDnSFXq11qSFuuhBT3ugYbFdqXmxdsivdj1C33ZtPl90-zVN5jB54PRf35Hieoq_v3n5Zf-ivPr__uL686i0XsvbCMCu8wIAF1QMzxFBG_WQHo5merCd2Ms4b7jSRXk8UvCFaMCK1E6Pxhp6i1wff68Xs3WRdrFnP6jqHvc4_VdJB_avEsFWb9F0xIjARvBm8OBik9jfVMqrObm2K0dmqgDImiWzQy-OUnL4trlS1D8W6edbRpaUo0uKio-AD3ImCxIwQRundrjCCBMoHhht69h-6S0uOLVkFggDB7QVDoy4OlM2plOz8bQ6A1a8OqGMH1LED7cbzv-O75X8vvQHPDsCu1JT_6EzCMIyc3gCJl7bx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1621202007</pqid></control><display><type>article</type><title>Casting inorganic structures with DNA molds</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Sun, Wei ; Boulais, Etienne ; Hakobyan, Yera ; Li Wang, Wei ; Guan, Amy ; Bathe, Mark ; Yin, Peng</creator><creatorcontrib>Sun, Wei ; Boulais, Etienne ; Hakobyan, Yera ; Li Wang, Wei ; Guan, Amy ; Bathe, Mark ; Yin, Peng ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1258361</identifier><identifier>PMID: 25301973</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Crystallography ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Gold ; Gold - chemistry ; Materials science ; Metal Nanoparticles - chemistry ; Molds ; Molecular Conformation ; Nanoparticles ; Nanostructure ; Nanostructured materials ; Nanotechnology - methods ; Plasmonics ; RESEARCH ARTICLE SUMMARY ; Seeds ; silver ; Silver - chemistry ; Strands</subject><ispartof>Science (American Association for the Advancement of Science), 2014-11, Vol.346 (6210), p.717-717</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science.</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-6b4c6f601063a74b2b343fdc7ba4adcf2cdbefb5ea29fad31fb2a6429ae68bfb3</citedby><cites>FETCH-LOGICAL-c569t-6b4c6f601063a74b2b343fdc7ba4adcf2cdbefb5ea29fad31fb2a6429ae68bfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917785$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917785$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25301973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1344929$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Boulais, Etienne</creatorcontrib><creatorcontrib>Hakobyan, Yera</creatorcontrib><creatorcontrib>Li Wang, Wei</creatorcontrib><creatorcontrib>Guan, Amy</creatorcontrib><creatorcontrib>Bathe, Mark</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Casting inorganic structures with DNA molds</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Crystallography</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Materials science</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molds</subject><subject>Molecular Conformation</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology - methods</subject><subject>Plasmonics</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Seeds</subject><subject>silver</subject><subject>Silver - chemistry</subject><subject>Strands</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuPFCEUhYnROO3o2pWm4mxMTM1weVWxMZm0z2SiG10ToKCbTjWMQGn894PpdnxsZsXifJwL5x6EngI-ByDiotjgonXnQPhIBdxDK8CS95Jgeh-tMKaiH_HAT9CjUnYYN03Sh-iEcIpBDnSFXq11qSFuuhBT3ugYbFdqXmxdsivdj1C33ZtPl90-zVN5jB54PRf35Hieoq_v3n5Zf-ivPr__uL686i0XsvbCMCu8wIAF1QMzxFBG_WQHo5merCd2Ms4b7jSRXk8UvCFaMCK1E6Pxhp6i1wff68Xs3WRdrFnP6jqHvc4_VdJB_avEsFWb9F0xIjARvBm8OBik9jfVMqrObm2K0dmqgDImiWzQy-OUnL4trlS1D8W6edbRpaUo0uKio-AD3ImCxIwQRundrjCCBMoHhht69h-6S0uOLVkFggDB7QVDoy4OlM2plOz8bQ6A1a8OqGMH1LED7cbzv-O75X8vvQHPDsCu1JT_6EzCMIyc3gCJl7bx</recordid><startdate>20141107</startdate><enddate>20141107</enddate><creator>Sun, Wei</creator><creator>Boulais, Etienne</creator><creator>Hakobyan, Yera</creator><creator>Li Wang, Wei</creator><creator>Guan, Amy</creator><creator>Bathe, Mark</creator><creator>Yin, Peng</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20141107</creationdate><title>Casting inorganic structures with DNA molds</title><author>Sun, Wei ; Boulais, Etienne ; Hakobyan, Yera ; Li Wang, Wei ; Guan, Amy ; Bathe, Mark ; Yin, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-6b4c6f601063a74b2b343fdc7ba4adcf2cdbefb5ea29fad31fb2a6429ae68bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Crystallography</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Materials science</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molds</topic><topic>Molecular Conformation</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology - methods</topic><topic>Plasmonics</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Seeds</topic><topic>silver</topic><topic>Silver - chemistry</topic><topic>Strands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Boulais, Etienne</creatorcontrib><creatorcontrib>Hakobyan, Yera</creatorcontrib><creatorcontrib>Li Wang, Wei</creatorcontrib><creatorcontrib>Guan, Amy</creatorcontrib><creatorcontrib>Bathe, Mark</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wei</au><au>Boulais, Etienne</au><au>Hakobyan, Yera</au><au>Li Wang, Wei</au><au>Guan, Amy</au><au>Bathe, Mark</au><au>Yin, Peng</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Casting inorganic structures with DNA molds</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-11-07</date><risdate>2014</risdate><volume>346</volume><issue>6210</issue><spage>717</spage><epage>717</epage><pages>717-717</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>25301973</pmid><doi>10.1126/science.1258361</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-11, Vol.346 (6210), p.717-717 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4260265 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | BASIC BIOLOGICAL SCIENCES Crystallography Deoxyribonucleic acid DNA DNA - chemistry Gold Gold - chemistry Materials science Metal Nanoparticles - chemistry Molds Molecular Conformation Nanoparticles Nanostructure Nanostructured materials Nanotechnology - methods Plasmonics RESEARCH ARTICLE SUMMARY Seeds silver Silver - chemistry Strands |
title | Casting inorganic structures with DNA molds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Casting%20inorganic%20structures%20with%20DNA%20molds&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sun,%20Wei&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2014-11-07&rft.volume=346&rft.issue=6210&rft.spage=717&rft.epage=717&rft.pages=717-717&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1258361&rft_dat=%3Cjstor_pubme%3E24917785%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1621202007&rft_id=info:pmid/25301973&rft_jstor_id=24917785&rfr_iscdi=true |