RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP)

The combination of selective 2'-hydroxyl acylation of RNA with high-throughput sequencing of the transcribed cDNA allows identification of chemically modified sites as mutations in the sequence that then yield highly accurate secondary-structure models of the RNA. Many biological processes are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2014-09, Vol.11 (9), p.959-965
Hauptverfasser: Siegfried, Nathan A, Busan, Steven, Rice, Greggory M, Nelson, Julie A E, Weeks, Kevin M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 9
container_start_page 959
container_title Nature methods
container_volume 11
creator Siegfried, Nathan A
Busan, Steven
Rice, Greggory M
Nelson, Julie A E
Weeks, Kevin M
description The combination of selective 2'-hydroxyl acylation of RNA with high-throughput sequencing of the transcribed cDNA allows identification of chemically modified sites as mutations in the sequence that then yield highly accurate secondary-structure models of the RNA. Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2′-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP–guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.
doi_str_mv 10.1038/nmeth.3029
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4259394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A381057766</galeid><sourcerecordid>A381057766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c884t-748f7e55b85d005c806214bda5a361cf96aae7715f253de8f82f8586516732cf3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3e-ANkwJtamTVfJ8ncCENprVC1-HEdsjPJNmUm2SYzhf33Zrtt3apUyUUC58l7OOd9i-IlRjOMqHznBzOezygi9aNiFwOTlcAIHt--UY13imcpXSBEKSPwtNghgIiUNd8tmq-fm3IIo7Nl51IbrkxclfNV-e2kOTsqte_KYRr16ILXfbmMwbre-UW5f12vPumzN8-LJ1b3yby4ufeKH8dH3w9PqtMvHz4eNqdVKyUbK8GkFQZgLqFDCFqJOMFs3mnQlOPW1lxrIwQGS4B2RlpJrATJAXNBSWvpXvF-o7uc5oPpWuPHqHu1jG7QcaWCdup-xbtztQhXKo9c05plgf0bgRguJ5NGNeSJTd9rb8KUFOZcEmA1r_-NAkggmGCR0de_oRdhinlbSRGOGasxYPIQhTkQJoAC-0UtdG-U8zbkQdp1a9VwKZFEFOMHKSqz80JwnqnZX6h8OjO4NniTnTT3Zf_rw3aHg82HNoaUorF3XmCk1sFU18FU62Bm-NW2e3fobRIz8HYDpFzyCxO3NvSn3E-EieZd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652475354</pqid></control><display><type>article</type><title>RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP)</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Siegfried, Nathan A ; Busan, Steven ; Rice, Greggory M ; Nelson, Julie A E ; Weeks, Kevin M</creator><creatorcontrib>Siegfried, Nathan A ; Busan, Steven ; Rice, Greggory M ; Nelson, Julie A E ; Weeks, Kevin M</creatorcontrib><description>The combination of selective 2'-hydroxyl acylation of RNA with high-throughput sequencing of the transcribed cDNA allows identification of chemically modified sites as mutations in the sequence that then yield highly accurate secondary-structure models of the RNA. Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2′-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP–guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.3029</identifier><identifier>PMID: 25028896</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/47 ; 45/71 ; 631/114/2397 ; 631/45/500 ; 631/57/2272 ; 631/92/96 ; Acylation ; Algorithms ; Analysis ; Base Sequence ; Bioinformatics ; Biological activity ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; Chemical tests and reagents ; DNA Mutational Analysis - methods ; Gene mutations ; Gene sequencing ; Genetic aspects ; Genetic research ; Genomes ; Genomics ; HIV ; HIV-1 - genetics ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Life Sciences ; Methods ; Molecular Sequence Data ; Mutation ; Next-generation sequencing ; Nucleotide Motifs ; Nucleotide sequence ; Nucleotides ; Physiological aspects ; Proteomics ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA, Viral - genetics ; Scientific method ; Sequence Analysis, RNA - methods ; Structural analysis ; Structure ; Structure-function relationships</subject><ispartof>Nature methods, 2014-09, Vol.11 (9), p.959-965</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c884t-748f7e55b85d005c806214bda5a361cf96aae7715f253de8f82f8586516732cf3</citedby><cites>FETCH-LOGICAL-c884t-748f7e55b85d005c806214bda5a361cf96aae7715f253de8f82f8586516732cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.3029$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.3029$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25028896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siegfried, Nathan A</creatorcontrib><creatorcontrib>Busan, Steven</creatorcontrib><creatorcontrib>Rice, Greggory M</creatorcontrib><creatorcontrib>Nelson, Julie A E</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><title>RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP)</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>The combination of selective 2'-hydroxyl acylation of RNA with high-throughput sequencing of the transcribed cDNA allows identification of chemically modified sites as mutations in the sequence that then yield highly accurate secondary-structure models of the RNA. Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2′-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP–guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.</description><subject>101/47</subject><subject>45/71</subject><subject>631/114/2397</subject><subject>631/45/500</subject><subject>631/57/2272</subject><subject>631/92/96</subject><subject>Acylation</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Chemical tests and reagents</subject><subject>DNA Mutational Analysis - methods</subject><subject>Gene mutations</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>HIV</subject><subject>HIV-1 - genetics</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Next-generation sequencing</subject><subject>Nucleotide Motifs</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Physiological aspects</subject><subject>Proteomics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA, Viral - genetics</subject><subject>Scientific method</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Structural analysis</subject><subject>Structure</subject><subject>Structure-function relationships</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFDEUhgdRbK3e-ANkwJtamTVfJ8ncCENprVC1-HEdsjPJNmUm2SYzhf33Zrtt3apUyUUC58l7OOd9i-IlRjOMqHznBzOezygi9aNiFwOTlcAIHt--UY13imcpXSBEKSPwtNghgIiUNd8tmq-fm3IIo7Nl51IbrkxclfNV-e2kOTsqte_KYRr16ILXfbmMwbre-UW5f12vPumzN8-LJ1b3yby4ufeKH8dH3w9PqtMvHz4eNqdVKyUbK8GkFQZgLqFDCFqJOMFs3mnQlOPW1lxrIwQGS4B2RlpJrATJAXNBSWvpXvF-o7uc5oPpWuPHqHu1jG7QcaWCdup-xbtztQhXKo9c05plgf0bgRguJ5NGNeSJTd9rb8KUFOZcEmA1r_-NAkggmGCR0de_oRdhinlbSRGOGasxYPIQhTkQJoAC-0UtdG-U8zbkQdp1a9VwKZFEFOMHKSqz80JwnqnZX6h8OjO4NniTnTT3Zf_rw3aHg82HNoaUorF3XmCk1sFU18FU62Bm-NW2e3fobRIz8HYDpFzyCxO3NvSn3E-EieZd</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Siegfried, Nathan A</creator><creator>Busan, Steven</creator><creator>Rice, Greggory M</creator><creator>Nelson, Julie A E</creator><creator>Weeks, Kevin M</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP)</title><author>Siegfried, Nathan A ; Busan, Steven ; Rice, Greggory M ; Nelson, Julie A E ; Weeks, Kevin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c884t-748f7e55b85d005c806214bda5a361cf96aae7715f253de8f82f8586516732cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>101/47</topic><topic>45/71</topic><topic>631/114/2397</topic><topic>631/45/500</topic><topic>631/57/2272</topic><topic>631/92/96</topic><topic>Acylation</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Chemical tests and reagents</topic><topic>DNA Mutational Analysis - methods</topic><topic>Gene mutations</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>HIV</topic><topic>HIV-1 - genetics</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Next-generation sequencing</topic><topic>Nucleotide Motifs</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Physiological aspects</topic><topic>Proteomics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA, Viral - genetics</topic><topic>Scientific method</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Structural analysis</topic><topic>Structure</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegfried, Nathan A</creatorcontrib><creatorcontrib>Busan, Steven</creatorcontrib><creatorcontrib>Rice, Greggory M</creatorcontrib><creatorcontrib>Nelson, Julie A E</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegfried, Nathan A</au><au>Busan, Steven</au><au>Rice, Greggory M</au><au>Nelson, Julie A E</au><au>Weeks, Kevin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP)</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>11</volume><issue>9</issue><spage>959</spage><epage>965</epage><pages>959-965</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>The combination of selective 2'-hydroxyl acylation of RNA with high-throughput sequencing of the transcribed cDNA allows identification of chemically modified sites as mutations in the sequence that then yield highly accurate secondary-structure models of the RNA. Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2′-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP–guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25028896</pmid><doi>10.1038/nmeth.3029</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2014-09, Vol.11 (9), p.959-965
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4259394
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 101/47
45/71
631/114/2397
631/45/500
631/57/2272
631/92/96
Acylation
Algorithms
Analysis
Base Sequence
Bioinformatics
Biological activity
Biological Microscopy
Biological Techniques
Biomedical Engineering/Biotechnology
Chemical tests and reagents
DNA Mutational Analysis - methods
Gene mutations
Gene sequencing
Genetic aspects
Genetic research
Genomes
Genomics
HIV
HIV-1 - genetics
Human immunodeficiency virus
Human immunodeficiency virus 1
Life Sciences
Methods
Molecular Sequence Data
Mutation
Next-generation sequencing
Nucleotide Motifs
Nucleotide sequence
Nucleotides
Physiological aspects
Proteomics
Ribonucleic acid
RNA
RNA sequencing
RNA, Viral - genetics
Scientific method
Sequence Analysis, RNA - methods
Structural analysis
Structure
Structure-function relationships
title RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20motif%20discovery%20by%20SHAPE%20and%20mutational%20profiling%20(SHAPE-MaP)&rft.jtitle=Nature%20methods&rft.au=Siegfried,%20Nathan%20A&rft.date=2014-09-01&rft.volume=11&rft.issue=9&rft.spage=959&rft.epage=965&rft.pages=959-965&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.3029&rft_dat=%3Cgale_pubme%3EA381057766%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652475354&rft_id=info:pmid/25028896&rft_galeid=A381057766&rfr_iscdi=true