Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle
Septins perform diverse functions through the formation of filaments and higher-order structures. However, the exact architecture of septin structures remains unclear. In the budding yeast Saccharomyces cerevisiae , septins form an ‘hourglass’ at the mother-bud neck before cytokinesis, which is conv...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-12, Vol.5 (1), p.5698-5698, Article 5698 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5698 |
---|---|
container_issue | 1 |
container_start_page | 5698 |
container_title | Nature communications |
container_volume | 5 |
creator | Ong, Katy Wloka, Carsten Okada, Satoshi Svitkina, Tatyana Bi, Erfei |
description | Septins perform diverse functions through the formation of filaments and higher-order structures. However, the exact architecture of septin structures remains unclear. In the budding yeast
Saccharomyces cerevisiae
, septins form an ‘hourglass’ at the mother-bud neck before cytokinesis, which is converted into a ‘double ring’ during cytokinesis. Here, using platinum-replica electron microscopy, we find that the early hourglass consists of septin double filaments oriented along the mother-bud axis. In the late hourglass, these double filaments are connected by periodic circumferential single filaments on the membrane-proximal side and are associated with centrally located, circumferential, myosin-II thick filaments on the membrane-distal side. The double ring consists of exclusively circumferential septin filaments. Live-cell imaging studies indicate that the hourglass-to-double ring transition is accompanied by loss of septin subunits from the hourglass and reorganization of the remaining subunits into the double ring. This work provides an unparalleled view of septin structures within cells and defines their remodelling dynamics during the cell cycle.
In budding yeast, septin filaments adopt an hourglass structure at the bud neck that is remodelled into a double ring. Ong
et al.
reveal in fine detail the dynamic reorganization of septin filaments within these structures through the cell cycle using platinum-replica electron microscopy. |
doi_str_mv | 10.1038/ncomms6698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4258872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3517003821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f81a2cee71cbff1d04bf66108bac07f37d312c3f17a34e4e49742d6343fa92713</originalsourceid><addsrcrecordid>eNplkUtLAzEUhYMoWqobf4AMuBGlmlcnMxuhFF9QcKPrkGZu7OhMUpOM0H9vhlatmiwSOB_n3AdCxwRfEsyKK6td24Y8L4sdNKCYkxERlO1u_Q_QUQivOB1WkoLzfXRAx1zwshQD9DzxelFH0LHzkClbZdXKqrbWmYfWVdA0tX3JnMniArIAy1jbTK-iC2_QQHQ2qzrfE72sE51E3cAh2jOqCXC0eYfo-fbmaXo_mj3ePUwns5HmnMaRKYiiGkAQPTeGVJjPTZ4TXMyVxsIwUTFCNTNEKMYh3VJwWuWMM6NKKggbouu177Kbt1BpsNGrRi593Sq_kk7V8rdi64V8cR-S03FRpNkM0dnGwLv3DkKUbR36PpQF1wVJUhgVY5z3Wad_0FfXeZva6ynMxJinCQ_R-ZrS3oXgwXwXQ7DsFyZ_Fpbgk-3yv9Gv9STgYg2EZT9l8FuZ_-0-AZz6oho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1630375400</pqid></control><display><type>article</type><title>Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle</title><source>Springer Nature OA Free Journals</source><creator>Ong, Katy ; Wloka, Carsten ; Okada, Satoshi ; Svitkina, Tatyana ; Bi, Erfei</creator><creatorcontrib>Ong, Katy ; Wloka, Carsten ; Okada, Satoshi ; Svitkina, Tatyana ; Bi, Erfei</creatorcontrib><description>Septins perform diverse functions through the formation of filaments and higher-order structures. However, the exact architecture of septin structures remains unclear. In the budding yeast
Saccharomyces cerevisiae
, septins form an ‘hourglass’ at the mother-bud neck before cytokinesis, which is converted into a ‘double ring’ during cytokinesis. Here, using platinum-replica electron microscopy, we find that the early hourglass consists of septin double filaments oriented along the mother-bud axis. In the late hourglass, these double filaments are connected by periodic circumferential single filaments on the membrane-proximal side and are associated with centrally located, circumferential, myosin-II thick filaments on the membrane-distal side. The double ring consists of exclusively circumferential septin filaments. Live-cell imaging studies indicate that the hourglass-to-double ring transition is accompanied by loss of septin subunits from the hourglass and reorganization of the remaining subunits into the double ring. This work provides an unparalleled view of septin structures within cells and defines their remodelling dynamics during the cell cycle.
In budding yeast, septin filaments adopt an hourglass structure at the bud neck that is remodelled into a double ring. Ong
et al.
reveal in fine detail the dynamic reorganization of septin filaments within these structures through the cell cycle using platinum-replica electron microscopy.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6698</identifier><identifier>PMID: 25474997</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/128 ; 631/80/641 ; Cell Cycle ; Cell Division ; Cytoskeleton - chemistry ; Cytoskeleton - genetics ; Cytoskeleton - metabolism ; Humanities and Social Sciences ; multidisciplinary ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Septins - genetics ; Septins - metabolism</subject><ispartof>Nature communications, 2014-12, Vol.5 (1), p.5698-5698, Article 5698</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f81a2cee71cbff1d04bf66108bac07f37d312c3f17a34e4e49742d6343fa92713</citedby><cites>FETCH-LOGICAL-c442t-f81a2cee71cbff1d04bf66108bac07f37d312c3f17a34e4e49742d6343fa92713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258872/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258872/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms6698$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25474997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, Katy</creatorcontrib><creatorcontrib>Wloka, Carsten</creatorcontrib><creatorcontrib>Okada, Satoshi</creatorcontrib><creatorcontrib>Svitkina, Tatyana</creatorcontrib><creatorcontrib>Bi, Erfei</creatorcontrib><title>Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Septins perform diverse functions through the formation of filaments and higher-order structures. However, the exact architecture of septin structures remains unclear. In the budding yeast
Saccharomyces cerevisiae
, septins form an ‘hourglass’ at the mother-bud neck before cytokinesis, which is converted into a ‘double ring’ during cytokinesis. Here, using platinum-replica electron microscopy, we find that the early hourglass consists of septin double filaments oriented along the mother-bud axis. In the late hourglass, these double filaments are connected by periodic circumferential single filaments on the membrane-proximal side and are associated with centrally located, circumferential, myosin-II thick filaments on the membrane-distal side. The double ring consists of exclusively circumferential septin filaments. Live-cell imaging studies indicate that the hourglass-to-double ring transition is accompanied by loss of septin subunits from the hourglass and reorganization of the remaining subunits into the double ring. This work provides an unparalleled view of septin structures within cells and defines their remodelling dynamics during the cell cycle.
In budding yeast, septin filaments adopt an hourglass structure at the bud neck that is remodelled into a double ring. Ong
et al.
reveal in fine detail the dynamic reorganization of septin filaments within these structures through the cell cycle using platinum-replica electron microscopy.</description><subject>631/80/128</subject><subject>631/80/641</subject><subject>Cell Cycle</subject><subject>Cell Division</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - genetics</subject><subject>Cytoskeleton - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Septins - genetics</subject><subject>Septins - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtLAzEUhYMoWqobf4AMuBGlmlcnMxuhFF9QcKPrkGZu7OhMUpOM0H9vhlatmiwSOB_n3AdCxwRfEsyKK6td24Y8L4sdNKCYkxERlO1u_Q_QUQivOB1WkoLzfXRAx1zwshQD9DzxelFH0LHzkClbZdXKqrbWmYfWVdA0tX3JnMniArIAy1jbTK-iC2_QQHQ2qzrfE72sE51E3cAh2jOqCXC0eYfo-fbmaXo_mj3ePUwns5HmnMaRKYiiGkAQPTeGVJjPTZ4TXMyVxsIwUTFCNTNEKMYh3VJwWuWMM6NKKggbouu177Kbt1BpsNGrRi593Sq_kk7V8rdi64V8cR-S03FRpNkM0dnGwLv3DkKUbR36PpQF1wVJUhgVY5z3Wad_0FfXeZva6ynMxJinCQ_R-ZrS3oXgwXwXQ7DsFyZ_Fpbgk-3yv9Gv9STgYg2EZT9l8FuZ_-0-AZz6oho</recordid><startdate>20141205</startdate><enddate>20141205</enddate><creator>Ong, Katy</creator><creator>Wloka, Carsten</creator><creator>Okada, Satoshi</creator><creator>Svitkina, Tatyana</creator><creator>Bi, Erfei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141205</creationdate><title>Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle</title><author>Ong, Katy ; Wloka, Carsten ; Okada, Satoshi ; Svitkina, Tatyana ; Bi, Erfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f81a2cee71cbff1d04bf66108bac07f37d312c3f17a34e4e49742d6343fa92713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/80/128</topic><topic>631/80/641</topic><topic>Cell Cycle</topic><topic>Cell Division</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - genetics</topic><topic>Cytoskeleton - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Septins - genetics</topic><topic>Septins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Katy</creatorcontrib><creatorcontrib>Wloka, Carsten</creatorcontrib><creatorcontrib>Okada, Satoshi</creatorcontrib><creatorcontrib>Svitkina, Tatyana</creatorcontrib><creatorcontrib>Bi, Erfei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ong, Katy</au><au>Wloka, Carsten</au><au>Okada, Satoshi</au><au>Svitkina, Tatyana</au><au>Bi, Erfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-12-05</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5698</spage><epage>5698</epage><pages>5698-5698</pages><artnum>5698</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Septins perform diverse functions through the formation of filaments and higher-order structures. However, the exact architecture of septin structures remains unclear. In the budding yeast
Saccharomyces cerevisiae
, septins form an ‘hourglass’ at the mother-bud neck before cytokinesis, which is converted into a ‘double ring’ during cytokinesis. Here, using platinum-replica electron microscopy, we find that the early hourglass consists of septin double filaments oriented along the mother-bud axis. In the late hourglass, these double filaments are connected by periodic circumferential single filaments on the membrane-proximal side and are associated with centrally located, circumferential, myosin-II thick filaments on the membrane-distal side. The double ring consists of exclusively circumferential septin filaments. Live-cell imaging studies indicate that the hourglass-to-double ring transition is accompanied by loss of septin subunits from the hourglass and reorganization of the remaining subunits into the double ring. This work provides an unparalleled view of septin structures within cells and defines their remodelling dynamics during the cell cycle.
In budding yeast, septin filaments adopt an hourglass structure at the bud neck that is remodelled into a double ring. Ong
et al.
reveal in fine detail the dynamic reorganization of septin filaments within these structures through the cell cycle using platinum-replica electron microscopy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25474997</pmid><doi>10.1038/ncomms6698</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-12, Vol.5 (1), p.5698-5698, Article 5698 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4258872 |
source | Springer Nature OA Free Journals |
subjects | 631/80/128 631/80/641 Cell Cycle Cell Division Cytoskeleton - chemistry Cytoskeleton - genetics Cytoskeleton - metabolism Humanities and Social Sciences multidisciplinary Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science Science (multidisciplinary) Septins - genetics Septins - metabolism |
title | Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20and%20dynamic%20remodelling%20of%20the%20septin%20cytoskeleton%20during%20the%20cell%20cycle&rft.jtitle=Nature%20communications&rft.au=Ong,%20Katy&rft.date=2014-12-05&rft.volume=5&rft.issue=1&rft.spage=5698&rft.epage=5698&rft.pages=5698-5698&rft.artnum=5698&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6698&rft_dat=%3Cproquest_C6C%3E3517003821%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1630375400&rft_id=info:pmid/25474997&rfr_iscdi=true |