Energy landscapes reveal the myopathic effects of tropomyosin mutations

[Display omitted] •Interaction energies between mutant tropomyosins and actin were calculated.•Missense mutations reset the switching mechanism controlling muscle contraction.•Mutations distort energy landscapes in ways that explain many phenotypic traits.•Outcomes of mutations can be predicted in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2014-12, Vol.564, p.89-99
Hauptverfasser: Orzechowski, Marek, Fischer, Stefan, Moore, Jeffrey R., Lehman, William, Farman, Gerrie P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue
container_start_page 89
container_title Archives of biochemistry and biophysics
container_volume 564
creator Orzechowski, Marek
Fischer, Stefan
Moore, Jeffrey R.
Lehman, William
Farman, Gerrie P.
description [Display omitted] •Interaction energies between mutant tropomyosins and actin were calculated.•Missense mutations reset the switching mechanism controlling muscle contraction.•Mutations distort energy landscapes in ways that explain many phenotypic traits.•Outcomes of mutations can be predicted in silico and validated experimentally.•Post-translational interventions can rescue regulatory imbalances. Striated muscle contraction is regulated by an interaction network connecting the effects of troponin, Ca2+, and myosin-heads to the azimuthal positioning of tropomyosin along thin filaments. Many missense mutations, located at the actin–tropomyosin interface, however, reset the regulatory switching mechanism either by weakening or strengthening residue-specific interactions, leading to hyper- or hypo-contractile pathologies. Here, we compute energy landscapes for the actin–tropomyosin interface and quantify contributions of single amino acid residues to actin–tropomyosin binding. The method is a useful tool to assess effects of actin and tropomyosin mutations, potentially relating initial stages of myopathy to alterations in thin filament stability and regulation. Landscapes for mutant filaments linked to hyper-contractility provide a simple picture that describes a decrease in actin–tropomyosin interaction energy. Destabilizing the blocked (relaxed)-state parallels previously noted enhanced Ca2+-sensitivity conferred by these mutants. Energy landscapes also identify post-translational modifications that can rescue regulatory imbalances. For example, cardiomyopathy-associated E62Q tropomyosin mutation weakens actin–tropomyosin interaction, but phosphorylation of neighboring S61 rescues the binding-deficit, results confirmed experimentally by in vitro motility assays. Unlike results on hyper-contractility-related mutants, landscapes for tropomyosin mutants tied to hypo-contractility do not present a straightforward picture. These mutations may affect other components of the regulatory network, e.g., troponin–tropomyosin signaling.
doi_str_mv 10.1016/j.abb.2014.09.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4258436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986114003415</els_id><sourcerecordid>2101362175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-6d4564a2b69f97c1b83ee829a361464040c908319a500a8d2615542eaf2239663</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpSbZpPkAvxcdc7I7-rkUgEEKaFgK9tGchy-OsFttyJe3Cfvtq2TQkl57mMO-9GX6PkM8UGgpUfd02tusaBlQ0oBuA9TuyoqBVDbwV78kKAHitW0XPyceUtgCUCsXOyDmTTFCQbEUe7meMT4dqtHOfnF0wVRH3aMcqb7CaDmGxeeNdhcOALqcqDFWOYQllk_xcTbtssw9z-kQ-DHZMePk8L8jvb_e_7r7Xjz8fftzdPtZO6jbXqhdSCcs6pQe9drRrOWLLtOWqvCZAgNPQcqqtBLBtzxSVUjC0A2NcK8UvyM0pd9l1E_YO5xztaJboJxsPJlhv3m5mvzFPYW8Ek63gx4Cr54AY_uwwZTP55HAsADDskmGFLFeMrmWR0pPUxZBSxOHlDAVzLMBsTSnAHAswoE0poHi-vP7vxfGPeBFcnwRYKO09RpOcx9lh72MhbPrg_xP_F0zIllA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101362175</pqid></control><display><type>article</type><title>Energy landscapes reveal the myopathic effects of tropomyosin mutations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Orzechowski, Marek ; Fischer, Stefan ; Moore, Jeffrey R. ; Lehman, William ; Farman, Gerrie P.</creator><creatorcontrib>Orzechowski, Marek ; Fischer, Stefan ; Moore, Jeffrey R. ; Lehman, William ; Farman, Gerrie P.</creatorcontrib><description>[Display omitted] •Interaction energies between mutant tropomyosins and actin were calculated.•Missense mutations reset the switching mechanism controlling muscle contraction.•Mutations distort energy landscapes in ways that explain many phenotypic traits.•Outcomes of mutations can be predicted in silico and validated experimentally.•Post-translational interventions can rescue regulatory imbalances. Striated muscle contraction is regulated by an interaction network connecting the effects of troponin, Ca2+, and myosin-heads to the azimuthal positioning of tropomyosin along thin filaments. Many missense mutations, located at the actin–tropomyosin interface, however, reset the regulatory switching mechanism either by weakening or strengthening residue-specific interactions, leading to hyper- or hypo-contractile pathologies. Here, we compute energy landscapes for the actin–tropomyosin interface and quantify contributions of single amino acid residues to actin–tropomyosin binding. The method is a useful tool to assess effects of actin and tropomyosin mutations, potentially relating initial stages of myopathy to alterations in thin filament stability and regulation. Landscapes for mutant filaments linked to hyper-contractility provide a simple picture that describes a decrease in actin–tropomyosin interaction energy. Destabilizing the blocked (relaxed)-state parallels previously noted enhanced Ca2+-sensitivity conferred by these mutants. Energy landscapes also identify post-translational modifications that can rescue regulatory imbalances. For example, cardiomyopathy-associated E62Q tropomyosin mutation weakens actin–tropomyosin interaction, but phosphorylation of neighboring S61 rescues the binding-deficit, results confirmed experimentally by in vitro motility assays. Unlike results on hyper-contractility-related mutants, landscapes for tropomyosin mutants tied to hypo-contractility do not present a straightforward picture. These mutations may affect other components of the regulatory network, e.g., troponin–tropomyosin signaling.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1016/j.abb.2014.09.007</identifier><identifier>PMID: 25241052</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin ; Actin Cytoskeleton - chemistry ; Actin Cytoskeleton - genetics ; Actin Cytoskeleton - metabolism ; Amino Acid Substitution ; amino acids ; calcium ; Calcium - chemistry ; Calcium - metabolism ; Cardiomyopathies ; Cardiomyopathy ; energy ; Genetic Diseases, Inborn ; Humans ; missense mutation ; muscle contraction ; Muscle regulation ; muscular diseases ; mutants ; Mutation, Missense ; Myosin ; phosphorylation ; post-translational modification ; Signal Transduction - genetics ; striated muscle ; Tropomyosin ; Tropomyosin - chemistry ; Tropomyosin - genetics ; Tropomyosin - metabolism ; tropomyosins</subject><ispartof>Archives of biochemistry and biophysics, 2014-12, Vol.564, p.89-99</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-6d4564a2b69f97c1b83ee829a361464040c908319a500a8d2615542eaf2239663</citedby><cites>FETCH-LOGICAL-c598t-6d4564a2b69f97c1b83ee829a361464040c908319a500a8d2615542eaf2239663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003986114003415$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25241052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orzechowski, Marek</creatorcontrib><creatorcontrib>Fischer, Stefan</creatorcontrib><creatorcontrib>Moore, Jeffrey R.</creatorcontrib><creatorcontrib>Lehman, William</creatorcontrib><creatorcontrib>Farman, Gerrie P.</creatorcontrib><title>Energy landscapes reveal the myopathic effects of tropomyosin mutations</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>[Display omitted] •Interaction energies between mutant tropomyosins and actin were calculated.•Missense mutations reset the switching mechanism controlling muscle contraction.•Mutations distort energy landscapes in ways that explain many phenotypic traits.•Outcomes of mutations can be predicted in silico and validated experimentally.•Post-translational interventions can rescue regulatory imbalances. Striated muscle contraction is regulated by an interaction network connecting the effects of troponin, Ca2+, and myosin-heads to the azimuthal positioning of tropomyosin along thin filaments. Many missense mutations, located at the actin–tropomyosin interface, however, reset the regulatory switching mechanism either by weakening or strengthening residue-specific interactions, leading to hyper- or hypo-contractile pathologies. Here, we compute energy landscapes for the actin–tropomyosin interface and quantify contributions of single amino acid residues to actin–tropomyosin binding. The method is a useful tool to assess effects of actin and tropomyosin mutations, potentially relating initial stages of myopathy to alterations in thin filament stability and regulation. Landscapes for mutant filaments linked to hyper-contractility provide a simple picture that describes a decrease in actin–tropomyosin interaction energy. Destabilizing the blocked (relaxed)-state parallels previously noted enhanced Ca2+-sensitivity conferred by these mutants. Energy landscapes also identify post-translational modifications that can rescue regulatory imbalances. For example, cardiomyopathy-associated E62Q tropomyosin mutation weakens actin–tropomyosin interaction, but phosphorylation of neighboring S61 rescues the binding-deficit, results confirmed experimentally by in vitro motility assays. Unlike results on hyper-contractility-related mutants, landscapes for tropomyosin mutants tied to hypo-contractility do not present a straightforward picture. These mutations may affect other components of the regulatory network, e.g., troponin–tropomyosin signaling.</description><subject>Actin</subject><subject>Actin Cytoskeleton - chemistry</subject><subject>Actin Cytoskeleton - genetics</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Amino Acid Substitution</subject><subject>amino acids</subject><subject>calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Cardiomyopathies</subject><subject>Cardiomyopathy</subject><subject>energy</subject><subject>Genetic Diseases, Inborn</subject><subject>Humans</subject><subject>missense mutation</subject><subject>muscle contraction</subject><subject>Muscle regulation</subject><subject>muscular diseases</subject><subject>mutants</subject><subject>Mutation, Missense</subject><subject>Myosin</subject><subject>phosphorylation</subject><subject>post-translational modification</subject><subject>Signal Transduction - genetics</subject><subject>striated muscle</subject><subject>Tropomyosin</subject><subject>Tropomyosin - chemistry</subject><subject>Tropomyosin - genetics</subject><subject>Tropomyosin - metabolism</subject><subject>tropomyosins</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9r3DAQxUVpSbZpPkAvxcdc7I7-rkUgEEKaFgK9tGchy-OsFttyJe3Cfvtq2TQkl57mMO-9GX6PkM8UGgpUfd02tusaBlQ0oBuA9TuyoqBVDbwV78kKAHitW0XPyceUtgCUCsXOyDmTTFCQbEUe7meMT4dqtHOfnF0wVRH3aMcqb7CaDmGxeeNdhcOALqcqDFWOYQllk_xcTbtssw9z-kQ-DHZMePk8L8jvb_e_7r7Xjz8fftzdPtZO6jbXqhdSCcs6pQe9drRrOWLLtOWqvCZAgNPQcqqtBLBtzxSVUjC0A2NcK8UvyM0pd9l1E_YO5xztaJboJxsPJlhv3m5mvzFPYW8Ek63gx4Cr54AY_uwwZTP55HAsADDskmGFLFeMrmWR0pPUxZBSxOHlDAVzLMBsTSnAHAswoE0poHi-vP7vxfGPeBFcnwRYKO09RpOcx9lh72MhbPrg_xP_F0zIllA</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Orzechowski, Marek</creator><creator>Fischer, Stefan</creator><creator>Moore, Jeffrey R.</creator><creator>Lehman, William</creator><creator>Farman, Gerrie P.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141215</creationdate><title>Energy landscapes reveal the myopathic effects of tropomyosin mutations</title><author>Orzechowski, Marek ; Fischer, Stefan ; Moore, Jeffrey R. ; Lehman, William ; Farman, Gerrie P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-6d4564a2b69f97c1b83ee829a361464040c908319a500a8d2615542eaf2239663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - chemistry</topic><topic>Actin Cytoskeleton - genetics</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Amino Acid Substitution</topic><topic>amino acids</topic><topic>calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Cardiomyopathies</topic><topic>Cardiomyopathy</topic><topic>energy</topic><topic>Genetic Diseases, Inborn</topic><topic>Humans</topic><topic>missense mutation</topic><topic>muscle contraction</topic><topic>Muscle regulation</topic><topic>muscular diseases</topic><topic>mutants</topic><topic>Mutation, Missense</topic><topic>Myosin</topic><topic>phosphorylation</topic><topic>post-translational modification</topic><topic>Signal Transduction - genetics</topic><topic>striated muscle</topic><topic>Tropomyosin</topic><topic>Tropomyosin - chemistry</topic><topic>Tropomyosin - genetics</topic><topic>Tropomyosin - metabolism</topic><topic>tropomyosins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orzechowski, Marek</creatorcontrib><creatorcontrib>Fischer, Stefan</creatorcontrib><creatorcontrib>Moore, Jeffrey R.</creatorcontrib><creatorcontrib>Lehman, William</creatorcontrib><creatorcontrib>Farman, Gerrie P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orzechowski, Marek</au><au>Fischer, Stefan</au><au>Moore, Jeffrey R.</au><au>Lehman, William</au><au>Farman, Gerrie P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy landscapes reveal the myopathic effects of tropomyosin mutations</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2014-12-15</date><risdate>2014</risdate><volume>564</volume><spage>89</spage><epage>99</epage><pages>89-99</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>[Display omitted] •Interaction energies between mutant tropomyosins and actin were calculated.•Missense mutations reset the switching mechanism controlling muscle contraction.•Mutations distort energy landscapes in ways that explain many phenotypic traits.•Outcomes of mutations can be predicted in silico and validated experimentally.•Post-translational interventions can rescue regulatory imbalances. Striated muscle contraction is regulated by an interaction network connecting the effects of troponin, Ca2+, and myosin-heads to the azimuthal positioning of tropomyosin along thin filaments. Many missense mutations, located at the actin–tropomyosin interface, however, reset the regulatory switching mechanism either by weakening or strengthening residue-specific interactions, leading to hyper- or hypo-contractile pathologies. Here, we compute energy landscapes for the actin–tropomyosin interface and quantify contributions of single amino acid residues to actin–tropomyosin binding. The method is a useful tool to assess effects of actin and tropomyosin mutations, potentially relating initial stages of myopathy to alterations in thin filament stability and regulation. Landscapes for mutant filaments linked to hyper-contractility provide a simple picture that describes a decrease in actin–tropomyosin interaction energy. Destabilizing the blocked (relaxed)-state parallels previously noted enhanced Ca2+-sensitivity conferred by these mutants. Energy landscapes also identify post-translational modifications that can rescue regulatory imbalances. For example, cardiomyopathy-associated E62Q tropomyosin mutation weakens actin–tropomyosin interaction, but phosphorylation of neighboring S61 rescues the binding-deficit, results confirmed experimentally by in vitro motility assays. Unlike results on hyper-contractility-related mutants, landscapes for tropomyosin mutants tied to hypo-contractility do not present a straightforward picture. These mutations may affect other components of the regulatory network, e.g., troponin–tropomyosin signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25241052</pmid><doi>10.1016/j.abb.2014.09.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Archives of biochemistry and biophysics, 2014-12, Vol.564, p.89-99
issn 0003-9861
1096-0384
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4258436
source MEDLINE; Elsevier ScienceDirect Journals
subjects Actin
Actin Cytoskeleton - chemistry
Actin Cytoskeleton - genetics
Actin Cytoskeleton - metabolism
Amino Acid Substitution
amino acids
calcium
Calcium - chemistry
Calcium - metabolism
Cardiomyopathies
Cardiomyopathy
energy
Genetic Diseases, Inborn
Humans
missense mutation
muscle contraction
Muscle regulation
muscular diseases
mutants
Mutation, Missense
Myosin
phosphorylation
post-translational modification
Signal Transduction - genetics
striated muscle
Tropomyosin
Tropomyosin - chemistry
Tropomyosin - genetics
Tropomyosin - metabolism
tropomyosins
title Energy landscapes reveal the myopathic effects of tropomyosin mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20landscapes%20reveal%20the%20myopathic%20effects%20of%20tropomyosin%20mutations&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Orzechowski,%20Marek&rft.date=2014-12-15&rft.volume=564&rft.spage=89&rft.epage=99&rft.pages=89-99&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1016/j.abb.2014.09.007&rft_dat=%3Cproquest_pubme%3E2101362175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101362175&rft_id=info:pmid/25241052&rft_els_id=S0003986114003415&rfr_iscdi=true