Applying horizontal gene transfer phenomena to enhance non-viral gene therapy
Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2013-11, Vol.172 (1), p.246-257 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 1 |
container_start_page | 246 |
container_title | Journal of controlled release |
container_volume | 172 |
creator | Elmer, Jacob J. Christensen, Matthew D. Rege, Kaushal |
description | Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Three different types of pathogens can deliver genetic material to eukaryotic nuclei: viruses (ssDNA, dsDNA, RNA), the prokaryote Agrobacterium tumefaciens (ssDNA), and the intracellular eukaryotic parasite Trypanosoma cruzi (minicircle DNA). [Display omitted] |
doi_str_mv | 10.1016/j.jconrel.2013.08.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4258102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365913004847</els_id><sourcerecordid>1459564636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-65f291ff9ccd9f768fd2f71736908febc674f815f33143a1051952ca14839ca93</originalsourceid><addsrcrecordid>eNqNkc1uEzEURi0EoqHwCMAs2cxgj_83oKqCglTEArq2XM914mhiD_YkUnh6HCWNYFVWd-FzP33XB6HXBHcEE_F-3a1dihnGrseEdlh1uOdP0IIoSVumNX-KFpVTLRVcX6AXpawxxpwy-Rxd9FRrRhlboG9X0zTuQ1w2q5TD7xRnOzZLiNDM2cbiITfTCmLaQLTNnBqIKxsdNDHFdhfyGV5BttP-JXrm7Vjg1WleorvPn35ef2lvv998vb66bR3ncm4F970m3mvnBu2lUH7ovSSSCo2Vh3snJPOKcE8pYdQSzInmvbOEKaqd1fQSfTjmTtv7DQwOYm07mimHjc17k2ww_77EsDLLtDOs54rgvga8OwXk9GsLZTabUByMo42QtsXUjxMSS83-A-UYS9Vzwh9HGddcMEFFRfkRdTmVksGfyxNsDoLN2pwEm4Ngg5Wpguvem78vP289GK3A2yPgbTJ2mUMxdz9qQm1JpOzFIeLjkYBqaBcgm-ICVKlDyOBmM6TwSIk_SRXDXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459564636</pqid></control><display><type>article</type><title>Applying horizontal gene transfer phenomena to enhance non-viral gene therapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Elmer, Jacob J. ; Christensen, Matthew D. ; Rege, Kaushal</creator><creatorcontrib>Elmer, Jacob J. ; Christensen, Matthew D. ; Rege, Kaushal</creatorcontrib><description>Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Three different types of pathogens can deliver genetic material to eukaryotic nuclei: viruses (ssDNA, dsDNA, RNA), the prokaryote Agrobacterium tumefaciens (ssDNA), and the intracellular eukaryotic parasite Trypanosoma cruzi (minicircle DNA). [Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2013.08.025</identifier><identifier>PMID: 23994344</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Agrobacterium radiobacter ; Agrobacterium tumefaciens ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - physiology ; Animals ; bacteria ; Bartonella henselae ; Bartonella henselae - genetics ; Bartonella henselae - physiology ; DNA ; eukaryotic cells ; gene therapy ; Gene Transfer, Horizontal ; genes ; genetic disorders ; genetic engineering ; Genetic Therapy - methods ; Horizontal gene transfer ; Host-Pathogen Interactions ; Humans ; Mimicry ; Non-viral gene delivery ; nucleotide sequences ; parasites ; pathogens ; Plants - microbiology ; prokaryotic cells ; Transgenes ; Trypanosoma cruzi ; Trypanosoma cruzi - genetics ; Trypanosoma cruzi - physiology ; viral proteins ; Virus Physiological Phenomena ; viruses ; Viruses - genetics</subject><ispartof>Journal of controlled release, 2013-11, Vol.172 (1), p.246-257</ispartof><rights>2013 Elsevier B.V.</rights><rights>2013.</rights><rights>2013 Elsevier B.V. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-65f291ff9ccd9f768fd2f71736908febc674f815f33143a1051952ca14839ca93</citedby><cites>FETCH-LOGICAL-c557t-65f291ff9ccd9f768fd2f71736908febc674f815f33143a1051952ca14839ca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168365913004847$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23994344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elmer, Jacob J.</creatorcontrib><creatorcontrib>Christensen, Matthew D.</creatorcontrib><creatorcontrib>Rege, Kaushal</creatorcontrib><title>Applying horizontal gene transfer phenomena to enhance non-viral gene therapy</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Three different types of pathogens can deliver genetic material to eukaryotic nuclei: viruses (ssDNA, dsDNA, RNA), the prokaryote Agrobacterium tumefaciens (ssDNA), and the intracellular eukaryotic parasite Trypanosoma cruzi (minicircle DNA). [Display omitted]</description><subject>Agrobacterium radiobacter</subject><subject>Agrobacterium tumefaciens</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - physiology</subject><subject>Animals</subject><subject>bacteria</subject><subject>Bartonella henselae</subject><subject>Bartonella henselae - genetics</subject><subject>Bartonella henselae - physiology</subject><subject>DNA</subject><subject>eukaryotic cells</subject><subject>gene therapy</subject><subject>Gene Transfer, Horizontal</subject><subject>genes</subject><subject>genetic disorders</subject><subject>genetic engineering</subject><subject>Genetic Therapy - methods</subject><subject>Horizontal gene transfer</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Mimicry</subject><subject>Non-viral gene delivery</subject><subject>nucleotide sequences</subject><subject>parasites</subject><subject>pathogens</subject><subject>Plants - microbiology</subject><subject>prokaryotic cells</subject><subject>Transgenes</subject><subject>Trypanosoma cruzi</subject><subject>Trypanosoma cruzi - genetics</subject><subject>Trypanosoma cruzi - physiology</subject><subject>viral proteins</subject><subject>Virus Physiological Phenomena</subject><subject>viruses</subject><subject>Viruses - genetics</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1uEzEURi0EoqHwCMAs2cxgj_83oKqCglTEArq2XM914mhiD_YkUnh6HCWNYFVWd-FzP33XB6HXBHcEE_F-3a1dihnGrseEdlh1uOdP0IIoSVumNX-KFpVTLRVcX6AXpawxxpwy-Rxd9FRrRhlboG9X0zTuQ1w2q5TD7xRnOzZLiNDM2cbiITfTCmLaQLTNnBqIKxsdNDHFdhfyGV5BttP-JXrm7Vjg1WleorvPn35ef2lvv998vb66bR3ncm4F970m3mvnBu2lUH7ovSSSCo2Vh3snJPOKcE8pYdQSzInmvbOEKaqd1fQSfTjmTtv7DQwOYm07mimHjc17k2ww_77EsDLLtDOs54rgvga8OwXk9GsLZTabUByMo42QtsXUjxMSS83-A-UYS9Vzwh9HGddcMEFFRfkRdTmVksGfyxNsDoLN2pwEm4Ngg5Wpguvem78vP289GK3A2yPgbTJ2mUMxdz9qQm1JpOzFIeLjkYBqaBcgm-ICVKlDyOBmM6TwSIk_SRXDXg</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>Elmer, Jacob J.</creator><creator>Christensen, Matthew D.</creator><creator>Rege, Kaushal</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131128</creationdate><title>Applying horizontal gene transfer phenomena to enhance non-viral gene therapy</title><author>Elmer, Jacob J. ; Christensen, Matthew D. ; Rege, Kaushal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-65f291ff9ccd9f768fd2f71736908febc674f815f33143a1051952ca14839ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agrobacterium radiobacter</topic><topic>Agrobacterium tumefaciens</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - physiology</topic><topic>Animals</topic><topic>bacteria</topic><topic>Bartonella henselae</topic><topic>Bartonella henselae - genetics</topic><topic>Bartonella henselae - physiology</topic><topic>DNA</topic><topic>eukaryotic cells</topic><topic>gene therapy</topic><topic>Gene Transfer, Horizontal</topic><topic>genes</topic><topic>genetic disorders</topic><topic>genetic engineering</topic><topic>Genetic Therapy - methods</topic><topic>Horizontal gene transfer</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Mimicry</topic><topic>Non-viral gene delivery</topic><topic>nucleotide sequences</topic><topic>parasites</topic><topic>pathogens</topic><topic>Plants - microbiology</topic><topic>prokaryotic cells</topic><topic>Transgenes</topic><topic>Trypanosoma cruzi</topic><topic>Trypanosoma cruzi - genetics</topic><topic>Trypanosoma cruzi - physiology</topic><topic>viral proteins</topic><topic>Virus Physiological Phenomena</topic><topic>viruses</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elmer, Jacob J.</creatorcontrib><creatorcontrib>Christensen, Matthew D.</creatorcontrib><creatorcontrib>Rege, Kaushal</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elmer, Jacob J.</au><au>Christensen, Matthew D.</au><au>Rege, Kaushal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying horizontal gene transfer phenomena to enhance non-viral gene therapy</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2013-11-28</date><risdate>2013</risdate><volume>172</volume><issue>1</issue><spage>246</spage><epage>257</epage><pages>246-257</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><abstract>Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Three different types of pathogens can deliver genetic material to eukaryotic nuclei: viruses (ssDNA, dsDNA, RNA), the prokaryote Agrobacterium tumefaciens (ssDNA), and the intracellular eukaryotic parasite Trypanosoma cruzi (minicircle DNA). [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23994344</pmid><doi>10.1016/j.jconrel.2013.08.025</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-3659 |
ispartof | Journal of controlled release, 2013-11, Vol.172 (1), p.246-257 |
issn | 0168-3659 1873-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4258102 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Agrobacterium radiobacter Agrobacterium tumefaciens Agrobacterium tumefaciens - genetics Agrobacterium tumefaciens - physiology Animals bacteria Bartonella henselae Bartonella henselae - genetics Bartonella henselae - physiology DNA eukaryotic cells gene therapy Gene Transfer, Horizontal genes genetic disorders genetic engineering Genetic Therapy - methods Horizontal gene transfer Host-Pathogen Interactions Humans Mimicry Non-viral gene delivery nucleotide sequences parasites pathogens Plants - microbiology prokaryotic cells Transgenes Trypanosoma cruzi Trypanosoma cruzi - genetics Trypanosoma cruzi - physiology viral proteins Virus Physiological Phenomena viruses Viruses - genetics |
title | Applying horizontal gene transfer phenomena to enhance non-viral gene therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20horizontal%20gene%20transfer%20phenomena%20to%20enhance%20non-viral%20gene%20therapy&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Elmer,%20Jacob%20J.&rft.date=2013-11-28&rft.volume=172&rft.issue=1&rft.spage=246&rft.epage=257&rft.pages=246-257&rft.issn=0168-3659&rft.eissn=1873-4995&rft_id=info:doi/10.1016/j.jconrel.2013.08.025&rft_dat=%3Cproquest_pubme%3E1459564636%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459564636&rft_id=info:pmid/23994344&rft_els_id=S0168365913004847&rfr_iscdi=true |