Identification of Novel Nuclear Targets of Human Thioredoxin 1
The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transc...
Gespeichert in:
Veröffentlicht in: | Molecular & cellular proteomics 2014-12, Vol.13 (12), p.3507-3518 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3518 |
---|---|
container_issue | 12 |
container_start_page | 3507 |
container_title | Molecular & cellular proteomics |
container_volume | 13 |
creator | Wu, Changgong Jain, Mohit Raja Li, Qing Oka, Shin-ichi Li, Wenge Kong, Ah-Ng Tony Nagarajan, Narayani Sadoshima, Junichi Simmons, William J. Li, Hong |
description | The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells. |
doi_str_mv | 10.1074/mcp.M114.040931 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4256501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620337750</els_id><sourcerecordid>1808699939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0oUfhKnS7aMs0dHn_s2g0SQgSQgDRHbfnsMTjaXR_27gn-ffZ0cIICUXmkeeb12A8hP4HOgTbiuHOr-Q2AmFNBNYcvZB8klzMtlPi6q5t6jxyU8o9SRqGR38kek4yDkHqfnFx57IcYorNDTH2VQnWb1thWt6Nr0eZqYfM9DmXTuBw721eLh5gy-vQU-wqOyLdg24I_Xs5DcvfnfHF2Obv-e3F1dno9c9Ptw2y5tJ5JuVTW88YiCwKkFtQ1tbTAA1iuvBdcCYXKaiHRqSA44yE4hhw0PyQn29zVuOzQu2nnbFuzyrGz-dkkG837Th8fzH1aG8FkLSlMAb9fAnJ6HLEMpovFYdvaHtNYDCiqaq0115-jNdOcCwFsQo-3qMuplIxhtxFQsxFkJkFmI8hsBU0Tv94-ZMe_GpkAvQVw-s51xGyKi9g79DGjG4xP8cPw_wqCn0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629334412</pqid></control><display><type>article</type><title>Identification of Novel Nuclear Targets of Human Thioredoxin 1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Changgong ; Jain, Mohit Raja ; Li, Qing ; Oka, Shin-ichi ; Li, Wenge ; Kong, Ah-Ng Tony ; Nagarajan, Narayani ; Sadoshima, Junichi ; Simmons, William J. ; Li, Hong</creator><creatorcontrib>Wu, Changgong ; Jain, Mohit Raja ; Li, Qing ; Oka, Shin-ichi ; Li, Wenge ; Kong, Ah-Ng Tony ; Nagarajan, Narayani ; Sadoshima, Junichi ; Simmons, William J. ; Li, Hong</creatorcontrib><description>The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M114.040931</identifier><identifier>PMID: 25231459</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Amino Acid Motifs ; Cell Line, Tumor ; Cell Nucleus - metabolism ; Cysteine - chemistry ; Cysteine - metabolism ; Cytoplasm - metabolism ; Disulfides - chemistry ; Gene Expression Profiling ; Gene Expression Regulation ; Human immunodeficiency virus 1 ; Humans ; Molecular Sequence Annotation ; Molecular Sequence Data ; Mutation ; Neurons - cytology ; Neurons - metabolism ; Oxidation-Reduction ; Protein Interaction Mapping ; Signal Transduction ; Thioredoxins - genetics ; Thioredoxins - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular & cellular proteomics, 2014-12, Vol.13 (12), p.3507-3518</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</citedby><cites>FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256501/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256501/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25231459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Changgong</creatorcontrib><creatorcontrib>Jain, Mohit Raja</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Oka, Shin-ichi</creatorcontrib><creatorcontrib>Li, Wenge</creatorcontrib><creatorcontrib>Kong, Ah-Ng Tony</creatorcontrib><creatorcontrib>Nagarajan, Narayani</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Simmons, William J.</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><title>Identification of Novel Nuclear Targets of Human Thioredoxin 1</title><title>Molecular & cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino Acid Motifs</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - metabolism</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Disulfides - chemistry</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Molecular Sequence Annotation</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Protein Interaction Mapping</subject><subject>Signal Transduction</subject><subject>Thioredoxins - genetics</subject><subject>Thioredoxins - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PHDEQhq0oUfhKnS7aMs0dHn_s2g0SQgSQgDRHbfnsMTjaXR_27gn-ffZ0cIICUXmkeeb12A8hP4HOgTbiuHOr-Q2AmFNBNYcvZB8klzMtlPi6q5t6jxyU8o9SRqGR38kek4yDkHqfnFx57IcYorNDTH2VQnWb1thWt6Nr0eZqYfM9DmXTuBw721eLh5gy-vQU-wqOyLdg24I_Xs5DcvfnfHF2Obv-e3F1dno9c9Ptw2y5tJ5JuVTW88YiCwKkFtQ1tbTAA1iuvBdcCYXKaiHRqSA44yE4hhw0PyQn29zVuOzQu2nnbFuzyrGz-dkkG837Th8fzH1aG8FkLSlMAb9fAnJ6HLEMpovFYdvaHtNYDCiqaq0115-jNdOcCwFsQo-3qMuplIxhtxFQsxFkJkFmI8hsBU0Tv94-ZMe_GpkAvQVw-s51xGyKi9g79DGjG4xP8cPw_wqCn0Q</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Wu, Changgong</creator><creator>Jain, Mohit Raja</creator><creator>Li, Qing</creator><creator>Oka, Shin-ichi</creator><creator>Li, Wenge</creator><creator>Kong, Ah-Ng Tony</creator><creator>Nagarajan, Narayani</creator><creator>Sadoshima, Junichi</creator><creator>Simmons, William J.</creator><creator>Li, Hong</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20141201</creationdate><title>Identification of Novel Nuclear Targets of Human Thioredoxin 1</title><author>Wu, Changgong ; Jain, Mohit Raja ; Li, Qing ; Oka, Shin-ichi ; Li, Wenge ; Kong, Ah-Ng Tony ; Nagarajan, Narayani ; Sadoshima, Junichi ; Simmons, William J. ; Li, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino Acid Motifs</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - metabolism</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Disulfides - chemistry</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Molecular Sequence Annotation</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Protein Interaction Mapping</topic><topic>Signal Transduction</topic><topic>Thioredoxins - genetics</topic><topic>Thioredoxins - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Changgong</creatorcontrib><creatorcontrib>Jain, Mohit Raja</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Oka, Shin-ichi</creatorcontrib><creatorcontrib>Li, Wenge</creatorcontrib><creatorcontrib>Kong, Ah-Ng Tony</creatorcontrib><creatorcontrib>Nagarajan, Narayani</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Simmons, William J.</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular & cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Changgong</au><au>Jain, Mohit Raja</au><au>Li, Qing</au><au>Oka, Shin-ichi</au><au>Li, Wenge</au><au>Kong, Ah-Ng Tony</au><au>Nagarajan, Narayani</au><au>Sadoshima, Junichi</au><au>Simmons, William J.</au><au>Li, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Novel Nuclear Targets of Human Thioredoxin 1</atitle><jtitle>Molecular & cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>13</volume><issue>12</issue><spage>3507</spage><epage>3518</epage><pages>3507-3518</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25231459</pmid><doi>10.1074/mcp.M114.040931</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-9476 |
ispartof | Molecular & cellular proteomics, 2014-12, Vol.13 (12), p.3507-3518 |
issn | 1535-9476 1535-9484 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4256501 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Amino Acid Motifs Cell Line, Tumor Cell Nucleus - metabolism Cysteine - chemistry Cysteine - metabolism Cytoplasm - metabolism Disulfides - chemistry Gene Expression Profiling Gene Expression Regulation Human immunodeficiency virus 1 Humans Molecular Sequence Annotation Molecular Sequence Data Mutation Neurons - cytology Neurons - metabolism Oxidation-Reduction Protein Interaction Mapping Signal Transduction Thioredoxins - genetics Thioredoxins - metabolism Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | Identification of Novel Nuclear Targets of Human Thioredoxin 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Novel%20Nuclear%20Targets%20of%20Human%20Thioredoxin%201&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Wu,%20Changgong&rft.date=2014-12-01&rft.volume=13&rft.issue=12&rft.spage=3507&rft.epage=3518&rft.pages=3507-3518&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M114.040931&rft_dat=%3Cproquest_pubme%3E1808699939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629334412&rft_id=info:pmid/25231459&rft_els_id=S1535947620337750&rfr_iscdi=true |