Identification of Novel Nuclear Targets of Human Thioredoxin 1

The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2014-12, Vol.13 (12), p.3507-3518
Hauptverfasser: Wu, Changgong, Jain, Mohit Raja, Li, Qing, Oka, Shin-ichi, Li, Wenge, Kong, Ah-Ng Tony, Nagarajan, Narayani, Sadoshima, Junichi, Simmons, William J., Li, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3518
container_issue 12
container_start_page 3507
container_title Molecular & cellular proteomics
container_volume 13
creator Wu, Changgong
Jain, Mohit Raja
Li, Qing
Oka, Shin-ichi
Li, Wenge
Kong, Ah-Ng Tony
Nagarajan, Narayani
Sadoshima, Junichi
Simmons, William J.
Li, Hong
description The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.
doi_str_mv 10.1074/mcp.M114.040931
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4256501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620337750</els_id><sourcerecordid>1808699939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0oUfhKnS7aMs0dHn_s2g0SQgSQgDRHbfnsMTjaXR_27gn-ffZ0cIICUXmkeeb12A8hP4HOgTbiuHOr-Q2AmFNBNYcvZB8klzMtlPi6q5t6jxyU8o9SRqGR38kek4yDkHqfnFx57IcYorNDTH2VQnWb1thWt6Nr0eZqYfM9DmXTuBw721eLh5gy-vQU-wqOyLdg24I_Xs5DcvfnfHF2Obv-e3F1dno9c9Ptw2y5tJ5JuVTW88YiCwKkFtQ1tbTAA1iuvBdcCYXKaiHRqSA44yE4hhw0PyQn29zVuOzQu2nnbFuzyrGz-dkkG837Th8fzH1aG8FkLSlMAb9fAnJ6HLEMpovFYdvaHtNYDCiqaq0115-jNdOcCwFsQo-3qMuplIxhtxFQsxFkJkFmI8hsBU0Tv94-ZMe_GpkAvQVw-s51xGyKi9g79DGjG4xP8cPw_wqCn0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629334412</pqid></control><display><type>article</type><title>Identification of Novel Nuclear Targets of Human Thioredoxin 1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Changgong ; Jain, Mohit Raja ; Li, Qing ; Oka, Shin-ichi ; Li, Wenge ; Kong, Ah-Ng Tony ; Nagarajan, Narayani ; Sadoshima, Junichi ; Simmons, William J. ; Li, Hong</creator><creatorcontrib>Wu, Changgong ; Jain, Mohit Raja ; Li, Qing ; Oka, Shin-ichi ; Li, Wenge ; Kong, Ah-Ng Tony ; Nagarajan, Narayani ; Sadoshima, Junichi ; Simmons, William J. ; Li, Hong</creatorcontrib><description>The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M114.040931</identifier><identifier>PMID: 25231459</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Amino Acid Motifs ; Cell Line, Tumor ; Cell Nucleus - metabolism ; Cysteine - chemistry ; Cysteine - metabolism ; Cytoplasm - metabolism ; Disulfides - chemistry ; Gene Expression Profiling ; Gene Expression Regulation ; Human immunodeficiency virus 1 ; Humans ; Molecular Sequence Annotation ; Molecular Sequence Data ; Mutation ; Neurons - cytology ; Neurons - metabolism ; Oxidation-Reduction ; Protein Interaction Mapping ; Signal Transduction ; Thioredoxins - genetics ; Thioredoxins - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular &amp; cellular proteomics, 2014-12, Vol.13 (12), p.3507-3518</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</citedby><cites>FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256501/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256501/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25231459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Changgong</creatorcontrib><creatorcontrib>Jain, Mohit Raja</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Oka, Shin-ichi</creatorcontrib><creatorcontrib>Li, Wenge</creatorcontrib><creatorcontrib>Kong, Ah-Ng Tony</creatorcontrib><creatorcontrib>Nagarajan, Narayani</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Simmons, William J.</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><title>Identification of Novel Nuclear Targets of Human Thioredoxin 1</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino Acid Motifs</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - metabolism</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Disulfides - chemistry</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Molecular Sequence Annotation</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Protein Interaction Mapping</subject><subject>Signal Transduction</subject><subject>Thioredoxins - genetics</subject><subject>Thioredoxins - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PHDEQhq0oUfhKnS7aMs0dHn_s2g0SQgSQgDRHbfnsMTjaXR_27gn-ffZ0cIICUXmkeeb12A8hP4HOgTbiuHOr-Q2AmFNBNYcvZB8klzMtlPi6q5t6jxyU8o9SRqGR38kek4yDkHqfnFx57IcYorNDTH2VQnWb1thWt6Nr0eZqYfM9DmXTuBw721eLh5gy-vQU-wqOyLdg24I_Xs5DcvfnfHF2Obv-e3F1dno9c9Ptw2y5tJ5JuVTW88YiCwKkFtQ1tbTAA1iuvBdcCYXKaiHRqSA44yE4hhw0PyQn29zVuOzQu2nnbFuzyrGz-dkkG837Th8fzH1aG8FkLSlMAb9fAnJ6HLEMpovFYdvaHtNYDCiqaq0115-jNdOcCwFsQo-3qMuplIxhtxFQsxFkJkFmI8hsBU0Tv94-ZMe_GpkAvQVw-s51xGyKi9g79DGjG4xP8cPw_wqCn0Q</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Wu, Changgong</creator><creator>Jain, Mohit Raja</creator><creator>Li, Qing</creator><creator>Oka, Shin-ichi</creator><creator>Li, Wenge</creator><creator>Kong, Ah-Ng Tony</creator><creator>Nagarajan, Narayani</creator><creator>Sadoshima, Junichi</creator><creator>Simmons, William J.</creator><creator>Li, Hong</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20141201</creationdate><title>Identification of Novel Nuclear Targets of Human Thioredoxin 1</title><author>Wu, Changgong ; Jain, Mohit Raja ; Li, Qing ; Oka, Shin-ichi ; Li, Wenge ; Kong, Ah-Ng Tony ; Nagarajan, Narayani ; Sadoshima, Junichi ; Simmons, William J. ; Li, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-bbad255b8ad37ae2f415940c765a13f1a38dd43848e8a945ec8f4323ffc2e3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino Acid Motifs</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - metabolism</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Disulfides - chemistry</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Molecular Sequence Annotation</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Protein Interaction Mapping</topic><topic>Signal Transduction</topic><topic>Thioredoxins - genetics</topic><topic>Thioredoxins - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Changgong</creatorcontrib><creatorcontrib>Jain, Mohit Raja</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Oka, Shin-ichi</creatorcontrib><creatorcontrib>Li, Wenge</creatorcontrib><creatorcontrib>Kong, Ah-Ng Tony</creatorcontrib><creatorcontrib>Nagarajan, Narayani</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Simmons, William J.</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Changgong</au><au>Jain, Mohit Raja</au><au>Li, Qing</au><au>Oka, Shin-ichi</au><au>Li, Wenge</au><au>Kong, Ah-Ng Tony</au><au>Nagarajan, Narayani</au><au>Sadoshima, Junichi</au><au>Simmons, William J.</au><au>Li, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Novel Nuclear Targets of Human Thioredoxin 1</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>13</volume><issue>12</issue><spage>3507</spage><epage>3518</epage><pages>3507-3518</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1–target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25231459</pmid><doi>10.1074/mcp.M114.040931</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2014-12, Vol.13 (12), p.3507-3518
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4256501
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Amino Acid Motifs
Cell Line, Tumor
Cell Nucleus - metabolism
Cysteine - chemistry
Cysteine - metabolism
Cytoplasm - metabolism
Disulfides - chemistry
Gene Expression Profiling
Gene Expression Regulation
Human immunodeficiency virus 1
Humans
Molecular Sequence Annotation
Molecular Sequence Data
Mutation
Neurons - cytology
Neurons - metabolism
Oxidation-Reduction
Protein Interaction Mapping
Signal Transduction
Thioredoxins - genetics
Thioredoxins - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title Identification of Novel Nuclear Targets of Human Thioredoxin 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Novel%20Nuclear%20Targets%20of%20Human%20Thioredoxin%201&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Wu,%20Changgong&rft.date=2014-12-01&rft.volume=13&rft.issue=12&rft.spage=3507&rft.epage=3518&rft.pages=3507-3518&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M114.040931&rft_dat=%3Cproquest_pubme%3E1808699939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629334412&rft_id=info:pmid/25231459&rft_els_id=S1535947620337750&rfr_iscdi=true