Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus

Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2014-12, Vol.107 (11), p.2700-2711
Hauptverfasser: Eckhert, Erik, Rangamani, Padmini, Davis, Annie E., Oster, George, Berleman, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2711
container_issue 11
container_start_page 2700
container_title Biophysical journal
container_volume 107
creator Eckhert, Erik
Rangamani, Padmini
Davis, Annie E.
Oster, George
Berleman, James E.
description Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.
doi_str_mv 10.1016/j.bpj.2014.09.046
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4255590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349514011114</els_id><sourcerecordid>1629962356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</originalsourceid><addsrcrecordid>eNp9kVGL1DAUhYMo7rj6A3yRgi--tN60SdogCDruqrDLouhzSNMbJyXTjEk77Px7M8y6qA8-JXC-e7jnHkKeU6goUPF6rPrdWNVAWQWyAiYekBXlrC4BOvGQrABAlA2T_Iw8SWkEoDUH-pic1ZyJLgsr8uXDon3x3gWzwa0z-X-TjPNezyGm4lofinWY5hh8sUbvF69j8RX3GJP2qXBTcX24DSYYs6TiVk_zZklPySObRXx2956T75cX39afyqubj5_X765Kw1o5l9yCbAbsrMXG9pKz1lLLZN3wrtV1C5b3rBlyprbhrQDWdMIMBgE7tFb0XXNO3p58d0u_xSzlNbVXu-i2Oh5U0E79rUxuo36EvWI151xCNnh1ZxDDzwXTrLYumZxSTxiWpKiopRR5IZHRl_-gY1jilONlqhGs7SgcKXqiTAwpRbT3y1BQx8LUqHJh6liYAqlyuDzz4s8U9xO_G8rAmxOA-ZZ7h1HlfnAyOLiIZlZDcP-x_wX5I6cA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636478106</pqid></control><display><type>article</type><title>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Eckhert, Erik ; Rangamani, Padmini ; Davis, Annie E. ; Oster, George ; Berleman, James E.</creator><creatorcontrib>Eckhert, Erik ; Rangamani, Padmini ; Davis, Annie E. ; Oster, George ; Berleman, James E.</creatorcontrib><description>Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2014.09.046</identifier><identifier>PMID: 25468349</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial proteins ; Bacterial Proteins - metabolism ; Biochemistry ; Biophysics ; Cellular biology ; Gene Knockout Techniques ; Gram-negative bacteria ; Models, Biological ; Molecular Machines, Motors and Nanoscale Biophysics ; Motility ; Mutation ; Mutation - genetics ; Myxococcus xanthus - cytology ; Myxococcus xanthus - metabolism ; Phenotype</subject><ispartof>Biophysical journal, 2014-12, Vol.107 (11), p.2700-2711</ispartof><rights>2014 Biophysical Society</rights><rights>Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Dec 2, 2014</rights><rights>2014 by the Biophysical Society. 2014 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</citedby><cites>FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255590/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2014.09.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25468349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eckhert, Erik</creatorcontrib><creatorcontrib>Rangamani, Padmini</creatorcontrib><creatorcontrib>Davis, Annie E.</creatorcontrib><creatorcontrib>Oster, George</creatorcontrib><creatorcontrib>Berleman, James E.</creatorcontrib><title>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.</description><subject>Bacterial proteins</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biophysics</subject><subject>Cellular biology</subject><subject>Gene Knockout Techniques</subject><subject>Gram-negative bacteria</subject><subject>Models, Biological</subject><subject>Molecular Machines, Motors and Nanoscale Biophysics</subject><subject>Motility</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Myxococcus xanthus - cytology</subject><subject>Myxococcus xanthus - metabolism</subject><subject>Phenotype</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1DAUhYMo7rj6A3yRgi--tN60SdogCDruqrDLouhzSNMbJyXTjEk77Px7M8y6qA8-JXC-e7jnHkKeU6goUPF6rPrdWNVAWQWyAiYekBXlrC4BOvGQrABAlA2T_Iw8SWkEoDUH-pic1ZyJLgsr8uXDon3x3gWzwa0z-X-TjPNezyGm4lofinWY5hh8sUbvF69j8RX3GJP2qXBTcX24DSYYs6TiVk_zZklPySObRXx2956T75cX39afyqubj5_X765Kw1o5l9yCbAbsrMXG9pKz1lLLZN3wrtV1C5b3rBlyprbhrQDWdMIMBgE7tFb0XXNO3p58d0u_xSzlNbVXu-i2Oh5U0E79rUxuo36EvWI151xCNnh1ZxDDzwXTrLYumZxSTxiWpKiopRR5IZHRl_-gY1jilONlqhGs7SgcKXqiTAwpRbT3y1BQx8LUqHJh6liYAqlyuDzz4s8U9xO_G8rAmxOA-ZZ7h1HlfnAyOLiIZlZDcP-x_wX5I6cA</recordid><startdate>20141202</startdate><enddate>20141202</enddate><creator>Eckhert, Erik</creator><creator>Rangamani, Padmini</creator><creator>Davis, Annie E.</creator><creator>Oster, George</creator><creator>Berleman, James E.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141202</creationdate><title>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</title><author>Eckhert, Erik ; Rangamani, Padmini ; Davis, Annie E. ; Oster, George ; Berleman, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacterial proteins</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biophysics</topic><topic>Cellular biology</topic><topic>Gene Knockout Techniques</topic><topic>Gram-negative bacteria</topic><topic>Models, Biological</topic><topic>Molecular Machines, Motors and Nanoscale Biophysics</topic><topic>Motility</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Myxococcus xanthus - cytology</topic><topic>Myxococcus xanthus - metabolism</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckhert, Erik</creatorcontrib><creatorcontrib>Rangamani, Padmini</creatorcontrib><creatorcontrib>Davis, Annie E.</creatorcontrib><creatorcontrib>Oster, George</creatorcontrib><creatorcontrib>Berleman, James E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckhert, Erik</au><au>Rangamani, Padmini</au><au>Davis, Annie E.</au><au>Oster, George</au><au>Berleman, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2014-12-02</date><risdate>2014</risdate><volume>107</volume><issue>11</issue><spage>2700</spage><epage>2711</epage><pages>2700-2711</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25468349</pmid><doi>10.1016/j.bpj.2014.09.046</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2014-12, Vol.107 (11), p.2700-2711
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4255590
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacterial proteins
Bacterial Proteins - metabolism
Biochemistry
Biophysics
Cellular biology
Gene Knockout Techniques
Gram-negative bacteria
Models, Biological
Molecular Machines, Motors and Nanoscale Biophysics
Motility
Mutation
Mutation - genetics
Myxococcus xanthus - cytology
Myxococcus xanthus - metabolism
Phenotype
title Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Biochemical%20Oscillators%20May%20Control%20Cellular%20Reversals%20in%20Myxococcus%20xanthus&rft.jtitle=Biophysical%20journal&rft.au=Eckhert,%20Erik&rft.date=2014-12-02&rft.volume=107&rft.issue=11&rft.spage=2700&rft.epage=2711&rft.pages=2700-2711&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2014.09.046&rft_dat=%3Cproquest_pubme%3E1629962356%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636478106&rft_id=info:pmid/25468349&rft_els_id=S0006349514011114&rfr_iscdi=true