Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus
Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previous...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2014-12, Vol.107 (11), p.2700-2711 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2711 |
---|---|
container_issue | 11 |
container_start_page | 2700 |
container_title | Biophysical journal |
container_volume | 107 |
creator | Eckhert, Erik Rangamani, Padmini Davis, Annie E. Oster, George Berleman, James E. |
description | Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state. |
doi_str_mv | 10.1016/j.bpj.2014.09.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4255590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349514011114</els_id><sourcerecordid>1629962356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</originalsourceid><addsrcrecordid>eNp9kVGL1DAUhYMo7rj6A3yRgi--tN60SdogCDruqrDLouhzSNMbJyXTjEk77Px7M8y6qA8-JXC-e7jnHkKeU6goUPF6rPrdWNVAWQWyAiYekBXlrC4BOvGQrABAlA2T_Iw8SWkEoDUH-pic1ZyJLgsr8uXDon3x3gWzwa0z-X-TjPNezyGm4lofinWY5hh8sUbvF69j8RX3GJP2qXBTcX24DSYYs6TiVk_zZklPySObRXx2956T75cX39afyqubj5_X765Kw1o5l9yCbAbsrMXG9pKz1lLLZN3wrtV1C5b3rBlyprbhrQDWdMIMBgE7tFb0XXNO3p58d0u_xSzlNbVXu-i2Oh5U0E79rUxuo36EvWI151xCNnh1ZxDDzwXTrLYumZxSTxiWpKiopRR5IZHRl_-gY1jilONlqhGs7SgcKXqiTAwpRbT3y1BQx8LUqHJh6liYAqlyuDzz4s8U9xO_G8rAmxOA-ZZ7h1HlfnAyOLiIZlZDcP-x_wX5I6cA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636478106</pqid></control><display><type>article</type><title>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Eckhert, Erik ; Rangamani, Padmini ; Davis, Annie E. ; Oster, George ; Berleman, James E.</creator><creatorcontrib>Eckhert, Erik ; Rangamani, Padmini ; Davis, Annie E. ; Oster, George ; Berleman, James E.</creatorcontrib><description>Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2014.09.046</identifier><identifier>PMID: 25468349</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial proteins ; Bacterial Proteins - metabolism ; Biochemistry ; Biophysics ; Cellular biology ; Gene Knockout Techniques ; Gram-negative bacteria ; Models, Biological ; Molecular Machines, Motors and Nanoscale Biophysics ; Motility ; Mutation ; Mutation - genetics ; Myxococcus xanthus - cytology ; Myxococcus xanthus - metabolism ; Phenotype</subject><ispartof>Biophysical journal, 2014-12, Vol.107 (11), p.2700-2711</ispartof><rights>2014 Biophysical Society</rights><rights>Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Dec 2, 2014</rights><rights>2014 by the Biophysical Society. 2014 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</citedby><cites>FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255590/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2014.09.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25468349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eckhert, Erik</creatorcontrib><creatorcontrib>Rangamani, Padmini</creatorcontrib><creatorcontrib>Davis, Annie E.</creatorcontrib><creatorcontrib>Oster, George</creatorcontrib><creatorcontrib>Berleman, James E.</creatorcontrib><title>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.</description><subject>Bacterial proteins</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biophysics</subject><subject>Cellular biology</subject><subject>Gene Knockout Techniques</subject><subject>Gram-negative bacteria</subject><subject>Models, Biological</subject><subject>Molecular Machines, Motors and Nanoscale Biophysics</subject><subject>Motility</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Myxococcus xanthus - cytology</subject><subject>Myxococcus xanthus - metabolism</subject><subject>Phenotype</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1DAUhYMo7rj6A3yRgi--tN60SdogCDruqrDLouhzSNMbJyXTjEk77Px7M8y6qA8-JXC-e7jnHkKeU6goUPF6rPrdWNVAWQWyAiYekBXlrC4BOvGQrABAlA2T_Iw8SWkEoDUH-pic1ZyJLgsr8uXDon3x3gWzwa0z-X-TjPNezyGm4lofinWY5hh8sUbvF69j8RX3GJP2qXBTcX24DSYYs6TiVk_zZklPySObRXx2956T75cX39afyqubj5_X765Kw1o5l9yCbAbsrMXG9pKz1lLLZN3wrtV1C5b3rBlyprbhrQDWdMIMBgE7tFb0XXNO3p58d0u_xSzlNbVXu-i2Oh5U0E79rUxuo36EvWI151xCNnh1ZxDDzwXTrLYumZxSTxiWpKiopRR5IZHRl_-gY1jilONlqhGs7SgcKXqiTAwpRbT3y1BQx8LUqHJh6liYAqlyuDzz4s8U9xO_G8rAmxOA-ZZ7h1HlfnAyOLiIZlZDcP-x_wX5I6cA</recordid><startdate>20141202</startdate><enddate>20141202</enddate><creator>Eckhert, Erik</creator><creator>Rangamani, Padmini</creator><creator>Davis, Annie E.</creator><creator>Oster, George</creator><creator>Berleman, James E.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141202</creationdate><title>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</title><author>Eckhert, Erik ; Rangamani, Padmini ; Davis, Annie E. ; Oster, George ; Berleman, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-5f093de8ffe3fb9547f1f4923587a270f5b43d0467357604386cdce0e8eff6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacterial proteins</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biophysics</topic><topic>Cellular biology</topic><topic>Gene Knockout Techniques</topic><topic>Gram-negative bacteria</topic><topic>Models, Biological</topic><topic>Molecular Machines, Motors and Nanoscale Biophysics</topic><topic>Motility</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Myxococcus xanthus - cytology</topic><topic>Myxococcus xanthus - metabolism</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckhert, Erik</creatorcontrib><creatorcontrib>Rangamani, Padmini</creatorcontrib><creatorcontrib>Davis, Annie E.</creatorcontrib><creatorcontrib>Oster, George</creatorcontrib><creatorcontrib>Berleman, James E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckhert, Erik</au><au>Rangamani, Padmini</au><au>Davis, Annie E.</au><au>Oster, George</au><au>Berleman, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2014-12-02</date><risdate>2014</risdate><volume>107</volume><issue>11</issue><spage>2700</spage><epage>2711</epage><pages>2700-2711</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25468349</pmid><doi>10.1016/j.bpj.2014.09.046</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2014-12, Vol.107 (11), p.2700-2711 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4255590 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bacterial proteins Bacterial Proteins - metabolism Biochemistry Biophysics Cellular biology Gene Knockout Techniques Gram-negative bacteria Models, Biological Molecular Machines, Motors and Nanoscale Biophysics Motility Mutation Mutation - genetics Myxococcus xanthus - cytology Myxococcus xanthus - metabolism Phenotype |
title | Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Biochemical%20Oscillators%20May%20Control%20Cellular%20Reversals%20in%20Myxococcus%20xanthus&rft.jtitle=Biophysical%20journal&rft.au=Eckhert,%20Erik&rft.date=2014-12-02&rft.volume=107&rft.issue=11&rft.spage=2700&rft.epage=2711&rft.pages=2700-2711&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2014.09.046&rft_dat=%3Cproquest_pubme%3E1629962356%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636478106&rft_id=info:pmid/25468349&rft_els_id=S0006349514011114&rfr_iscdi=true |