Presynaptic HCN Channels Regulate Vesicular Glutamate Transport

The amount of neurotransmitter stored in synaptic vesicles determines postsynaptic quantal size and thus the strength of synaptic transmission. However, little is known about regulation of vesicular neurotransmitter uptake. In recordings from the calyx of Held, a giant mammalian glutamatergic synaps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2014-10, Vol.84 (2), p.340-346
Hauptverfasser: Huang, Hai, Trussell, Laurence O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 2
container_start_page 340
container_title Neuron (Cambridge, Mass.)
container_volume 84
creator Huang, Hai
Trussell, Laurence O.
description The amount of neurotransmitter stored in synaptic vesicles determines postsynaptic quantal size and thus the strength of synaptic transmission. However, little is known about regulation of vesicular neurotransmitter uptake. In recordings from the calyx of Held, a giant mammalian glutamatergic synapse, we found that changes in presynaptic Na+ concentration above and below a resting value of 13 mM regulated vesicular glutamate uptake, consistent with activation of a vesicular monovalent cation Na+(K+)/H+ exchanger. Na+ flux through presynaptic plasma membrane hyperpolarization-activated cyclic nucleotide-gated (HCN) channels enhanced presynaptic Na+ concentration and thus controlled postsynaptic quantal size. Our results indicate that a plasma membrane ion channel controls synaptic strength by modulating vesicular neurotransmitter uptake through a Na+-dependent process. •Sodium ions facilitate glutamate loading into synaptic vesicles•Plasma membrane HCN channel controls intraterminal sodium level•Change in HCN channel activity alters the content of synaptic vesicles Loading synaptic vesicles with transmitter depends upon availability of intracellular cations. Here, Huang and Trussell show that glutamate loading into vesicles is regulated by Na+ levels set by Na+-permeable HCN channels in the presynaptic plasma membrane.
doi_str_mv 10.1016/j.neuron.2014.08.046
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4254032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627314007478</els_id><sourcerecordid>1629967326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-b2fa1192722388667b0fcc70fa1bb14ba81fd54a40ebda908eff526d1e985c683</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EosvCN0AoEhcuCWPHduwLqFpBi1QBQoWr5TiT1qusvdhJpX57vNpS_hwQJ1vjNzPP70fIcwoNBSpfb5uAS4qhYUB5A6oBLh-QFQXd1Zxq_ZCsQGlZS9a1J-RJzlsoQqHpY3LCBJNtJ9iKvP2cMN8Gu5-9q843H6vNtQ0Bp1x9watlsjNW3zB7V66pOpuW2e4OtctkQ97HND8lj0Y7ZXx2d67J1_fvLjfn9cWnsw-b04vaCcbnumejpVSzjrFWKSm7HkbnOijVvqe8t4qOg-CWA_aD1aBwHIvHgaJWwknVrsmb49z90u9wcBjmZCezT35n062J1ps_X4K_NlfxxnAmOLSsDHh1NyDF7wvm2ex8djhNNmBcsqGyFVAciu4_pExr2bUlwzV5-Zd0G5cUShIHFVDBQImi4keVSzHnhOO9bwrmANNszRGmOcA0oEyBWdpe_P7n-6af9H6FUnjhjcdksvMYHA4-oZvNEP2_N_wAybKyQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620152085</pqid></control><display><type>article</type><title>Presynaptic HCN Channels Regulate Vesicular Glutamate Transport</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Hai ; Trussell, Laurence O.</creator><creatorcontrib>Huang, Hai ; Trussell, Laurence O.</creatorcontrib><description>The amount of neurotransmitter stored in synaptic vesicles determines postsynaptic quantal size and thus the strength of synaptic transmission. However, little is known about regulation of vesicular neurotransmitter uptake. In recordings from the calyx of Held, a giant mammalian glutamatergic synapse, we found that changes in presynaptic Na+ concentration above and below a resting value of 13 mM regulated vesicular glutamate uptake, consistent with activation of a vesicular monovalent cation Na+(K+)/H+ exchanger. Na+ flux through presynaptic plasma membrane hyperpolarization-activated cyclic nucleotide-gated (HCN) channels enhanced presynaptic Na+ concentration and thus controlled postsynaptic quantal size. Our results indicate that a plasma membrane ion channel controls synaptic strength by modulating vesicular neurotransmitter uptake through a Na+-dependent process. •Sodium ions facilitate glutamate loading into synaptic vesicles•Plasma membrane HCN channel controls intraterminal sodium level•Change in HCN channel activity alters the content of synaptic vesicles Loading synaptic vesicles with transmitter depends upon availability of intracellular cations. Here, Huang and Trussell show that glutamate loading into vesicles is regulated by Na+ levels set by Na+-permeable HCN channels in the presynaptic plasma membrane.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.08.046</identifier><identifier>PMID: 25263752</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biological Transport - physiology ; Calibration ; Cyclic Nucleotide-Gated Cation Channels - metabolism ; Excitatory Postsynaptic Potentials - physiology ; Experiments ; Glutamic Acid - metabolism ; Hemodialysis ; Neurotransmitter Agents - metabolism ; Patch-Clamp Techniques - methods ; Presynaptic Terminals - metabolism ; Rats, Wistar ; Rodents ; Synaptic Transmission - physiology ; Synaptic Vesicles - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2014-10, Vol.84 (2), p.340-346</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 22, 2014</rights><rights>2014 Elsevier Inc. All rights reserved 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-b2fa1192722388667b0fcc70fa1bb14ba81fd54a40ebda908eff526d1e985c683</citedby><cites>FETCH-LOGICAL-c524t-b2fa1192722388667b0fcc70fa1bb14ba81fd54a40ebda908eff526d1e985c683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2014.08.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25263752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Trussell, Laurence O.</creatorcontrib><title>Presynaptic HCN Channels Regulate Vesicular Glutamate Transport</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The amount of neurotransmitter stored in synaptic vesicles determines postsynaptic quantal size and thus the strength of synaptic transmission. However, little is known about regulation of vesicular neurotransmitter uptake. In recordings from the calyx of Held, a giant mammalian glutamatergic synapse, we found that changes in presynaptic Na+ concentration above and below a resting value of 13 mM regulated vesicular glutamate uptake, consistent with activation of a vesicular monovalent cation Na+(K+)/H+ exchanger. Na+ flux through presynaptic plasma membrane hyperpolarization-activated cyclic nucleotide-gated (HCN) channels enhanced presynaptic Na+ concentration and thus controlled postsynaptic quantal size. Our results indicate that a plasma membrane ion channel controls synaptic strength by modulating vesicular neurotransmitter uptake through a Na+-dependent process. •Sodium ions facilitate glutamate loading into synaptic vesicles•Plasma membrane HCN channel controls intraterminal sodium level•Change in HCN channel activity alters the content of synaptic vesicles Loading synaptic vesicles with transmitter depends upon availability of intracellular cations. Here, Huang and Trussell show that glutamate loading into vesicles is regulated by Na+ levels set by Na+-permeable HCN channels in the presynaptic plasma membrane.</description><subject>Animals</subject><subject>Biological Transport - physiology</subject><subject>Calibration</subject><subject>Cyclic Nucleotide-Gated Cation Channels - metabolism</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Experiments</subject><subject>Glutamic Acid - metabolism</subject><subject>Hemodialysis</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Vesicles - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EosvCN0AoEhcuCWPHduwLqFpBi1QBQoWr5TiT1qusvdhJpX57vNpS_hwQJ1vjNzPP70fIcwoNBSpfb5uAS4qhYUB5A6oBLh-QFQXd1Zxq_ZCsQGlZS9a1J-RJzlsoQqHpY3LCBJNtJ9iKvP2cMN8Gu5-9q843H6vNtQ0Bp1x9watlsjNW3zB7V66pOpuW2e4OtctkQ97HND8lj0Y7ZXx2d67J1_fvLjfn9cWnsw-b04vaCcbnumejpVSzjrFWKSm7HkbnOijVvqe8t4qOg-CWA_aD1aBwHIvHgaJWwknVrsmb49z90u9wcBjmZCezT35n062J1ps_X4K_NlfxxnAmOLSsDHh1NyDF7wvm2ex8djhNNmBcsqGyFVAciu4_pExr2bUlwzV5-Zd0G5cUShIHFVDBQImi4keVSzHnhOO9bwrmANNszRGmOcA0oEyBWdpe_P7n-6af9H6FUnjhjcdksvMYHA4-oZvNEP2_N_wAybKyQw</recordid><startdate>20141022</startdate><enddate>20141022</enddate><creator>Huang, Hai</creator><creator>Trussell, Laurence O.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141022</creationdate><title>Presynaptic HCN Channels Regulate Vesicular Glutamate Transport</title><author>Huang, Hai ; Trussell, Laurence O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-b2fa1192722388667b0fcc70fa1bb14ba81fd54a40ebda908eff526d1e985c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Transport - physiology</topic><topic>Calibration</topic><topic>Cyclic Nucleotide-Gated Cation Channels - metabolism</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Experiments</topic><topic>Glutamic Acid - metabolism</topic><topic>Hemodialysis</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Trussell, Laurence O.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hai</au><au>Trussell, Laurence O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic HCN Channels Regulate Vesicular Glutamate Transport</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-10-22</date><risdate>2014</risdate><volume>84</volume><issue>2</issue><spage>340</spage><epage>346</epage><pages>340-346</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The amount of neurotransmitter stored in synaptic vesicles determines postsynaptic quantal size and thus the strength of synaptic transmission. However, little is known about regulation of vesicular neurotransmitter uptake. In recordings from the calyx of Held, a giant mammalian glutamatergic synapse, we found that changes in presynaptic Na+ concentration above and below a resting value of 13 mM regulated vesicular glutamate uptake, consistent with activation of a vesicular monovalent cation Na+(K+)/H+ exchanger. Na+ flux through presynaptic plasma membrane hyperpolarization-activated cyclic nucleotide-gated (HCN) channels enhanced presynaptic Na+ concentration and thus controlled postsynaptic quantal size. Our results indicate that a plasma membrane ion channel controls synaptic strength by modulating vesicular neurotransmitter uptake through a Na+-dependent process. •Sodium ions facilitate glutamate loading into synaptic vesicles•Plasma membrane HCN channel controls intraterminal sodium level•Change in HCN channel activity alters the content of synaptic vesicles Loading synaptic vesicles with transmitter depends upon availability of intracellular cations. Here, Huang and Trussell show that glutamate loading into vesicles is regulated by Na+ levels set by Na+-permeable HCN channels in the presynaptic plasma membrane.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25263752</pmid><doi>10.1016/j.neuron.2014.08.046</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2014-10, Vol.84 (2), p.340-346
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4254032
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Animals
Biological Transport - physiology
Calibration
Cyclic Nucleotide-Gated Cation Channels - metabolism
Excitatory Postsynaptic Potentials - physiology
Experiments
Glutamic Acid - metabolism
Hemodialysis
Neurotransmitter Agents - metabolism
Patch-Clamp Techniques - methods
Presynaptic Terminals - metabolism
Rats, Wistar
Rodents
Synaptic Transmission - physiology
Synaptic Vesicles - metabolism
title Presynaptic HCN Channels Regulate Vesicular Glutamate Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20HCN%20Channels%20Regulate%20Vesicular%20Glutamate%20Transport&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Huang,%20Hai&rft.date=2014-10-22&rft.volume=84&rft.issue=2&rft.spage=340&rft.epage=346&rft.pages=340-346&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.08.046&rft_dat=%3Cproquest_pubme%3E1629967326%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620152085&rft_id=info:pmid/25263752&rft_els_id=S0896627314007478&rfr_iscdi=true