DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA

The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double‐strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2014-10, Vol.33 (20), p.2422-2435
Hauptverfasser: Sung, Sihyun, Li, Fuyang, Park, Young Bong, Kim, Jin Seok, Kim, Ae-Kyoung, Song, Ok-kyu, Kim, Jiae, Che, Jun, Lee, Sang Eun, Cho, Yunje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2435
container_issue 20
container_start_page 2422
container_title The EMBO journal
container_volume 33
creator Sung, Sihyun
Li, Fuyang
Park, Young Bong
Kim, Jin Seok
Kim, Ae-Kyoung
Song, Ok-kyu
Kim, Jiae
Che, Jun
Lee, Sang Eun
Cho, Yunje
description The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double‐strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 ( Mj Mre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B‐form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid‐body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non‐homologous end joining, and tolerance to DNA‐damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair. Synopsis DNA end tethering and nucleolytic resection at double‐strand break sites are key functions of the conserved MRN (Mre11‐Rad50‐Nbs1) complex mediated by its Mre11 subunit. New crystal structures of Mre11‐DNA complexes reveal an alternative model for Mre11‐DNA complexes, in which Mre11 dimers recognize a single stretch of longer, more physiological DNA substrate. Structures of Mre11 bound to longer DNA molecules show that the Mre11 dimer as a whole recognizes one single molecule of extended B‐form DNA. A structurally conserved basic region constituting the DNA binding interface is important for binding and cleavage of substrates, as well as for in vivo repair functions. Mre11 quaternary structural changes may facilitate DNA end melting and guide broken ends to the nuclease active site. DNA end tethering may require further oligomerization of Mre11 dimers. Graphical Abstract Crystal structures reveal the importance of a novel, conserved interface through which the dimeric MRN complex subunit Mre11 binds a single molecule of longer DNA representing its physiological substrate.
doi_str_mv 10.15252/embj.201488299
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4253529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1613940223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5519-a6c600dd4d2d4260447aeab7080f44d0f044e02d2f97b1ab8cc5ca45b454aa293</originalsourceid><addsrcrecordid>eNqFkc9v0zAYhi0EYmVw5oYsceGSzXbs_NgBaVu3AtoGBxCIi-XYX1KXxC52wuh_T9aMqiAhTrbs5338WS9Czyk5ooIJdgxdtTpihPKiYGX5AM0oz0jCSC4eohlhGU04LcoD9CTGFSFEFDl9jA6YoCTnOZuhan5zisEZHED7xtneeoerDe6XgK8DUIrdoFtQEbCxHYQTbF20zbKP46b3YyyC3obUVrJWNmBfY6M61YDBo_4pelSrNsKz-_UQfbq8-Hj-Jrl6v3h7fnqVaCFomahMZ4QYww0znGWE81yBqnJSkJpzQ-rxBAgzrC7ziqqq0FpoxUXFBVeKlekhej1510PVgdHg-qBauQ62U2EjvbLyzxtnl7LxPyRnIhVbwat7QfDfB4i97GzU0LbKgR-ipBlNS04YS0f05V_oyg_Bjd-7oxgjaVaykTqeKB18jAHq3TCUyG1_8q4_uetvTLzY_8OO_13YCJxMwK1tYfM_n7y4Pnu3bydTOI4510DYm_qfAyVTxMYefu7eU-GbzPI0F_LzzULm868f5gtO5Zf0F0a_xgo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612203692</pqid></control><display><type>article</type><title>DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA</title><source>Springer Nature OA Free Journals</source><creator>Sung, Sihyun ; Li, Fuyang ; Park, Young Bong ; Kim, Jin Seok ; Kim, Ae-Kyoung ; Song, Ok-kyu ; Kim, Jiae ; Che, Jun ; Lee, Sang Eun ; Cho, Yunje</creator><creatorcontrib>Sung, Sihyun ; Li, Fuyang ; Park, Young Bong ; Kim, Jin Seok ; Kim, Ae-Kyoung ; Song, Ok-kyu ; Kim, Jiae ; Che, Jun ; Lee, Sang Eun ; Cho, Yunje</creatorcontrib><description>The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double‐strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 ( Mj Mre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B‐form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid‐body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non‐homologous end joining, and tolerance to DNA‐damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair. Synopsis DNA end tethering and nucleolytic resection at double‐strand break sites are key functions of the conserved MRN (Mre11‐Rad50‐Nbs1) complex mediated by its Mre11 subunit. New crystal structures of Mre11‐DNA complexes reveal an alternative model for Mre11‐DNA complexes, in which Mre11 dimers recognize a single stretch of longer, more physiological DNA substrate. Structures of Mre11 bound to longer DNA molecules show that the Mre11 dimer as a whole recognizes one single molecule of extended B‐form DNA. A structurally conserved basic region constituting the DNA binding interface is important for binding and cleavage of substrates, as well as for in vivo repair functions. Mre11 quaternary structural changes may facilitate DNA end melting and guide broken ends to the nuclease active site. DNA end tethering may require further oligomerization of Mre11 dimers. Graphical Abstract Crystal structures reveal the importance of a novel, conserved interface through which the dimeric MRN complex subunit Mre11 binds a single molecule of longer DNA representing its physiological substrate.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201488299</identifier><identifier>PMID: 25107472</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Amino Acid Sequence ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Biochemistry ; conserved basic region ; Crystal structure ; Crystallography, X-Ray ; Deoxyribonucleic acid ; Dimerization ; DNA ; DNA Breaks, Double-Stranded ; DNA end recognition ; DNA End-Joining Repair ; DNA Mutational Analysis ; DNA repair ; DNA, Archaeal - genetics ; DNA, Archaeal - metabolism ; DSB repair ; EMBO13 ; EMBO40 ; Endodeoxyribonucleases - chemistry ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Enzymes ; Exodeoxyribonucleases - chemistry ; Exodeoxyribonucleases - genetics ; Exodeoxyribonucleases - metabolism ; Melting ; Methanocaldococcus - chemistry ; Methanocaldococcus - enzymology ; Methanocaldococcus - genetics ; Models, Molecular ; Models, Structural ; Molecular biology ; Molecular Sequence Data ; Mre11-DNA ; Protein Binding ; Sequence Alignment</subject><ispartof>The EMBO journal, 2014-10, Vol.33 (20), p.2422-2435</ispartof><rights>The Authors 2014</rights><rights>2014 The Authors</rights><rights>2014 The Authors.</rights><rights>2014 EMBO</rights><rights>2014 The Authors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5519-a6c600dd4d2d4260447aeab7080f44d0f044e02d2f97b1ab8cc5ca45b454aa293</citedby><cites>FETCH-LOGICAL-c5519-a6c600dd4d2d4260447aeab7080f44d0f044e02d2f97b1ab8cc5ca45b454aa293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253529/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253529/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201488299$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25107472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sung, Sihyun</creatorcontrib><creatorcontrib>Li, Fuyang</creatorcontrib><creatorcontrib>Park, Young Bong</creatorcontrib><creatorcontrib>Kim, Jin Seok</creatorcontrib><creatorcontrib>Kim, Ae-Kyoung</creatorcontrib><creatorcontrib>Song, Ok-kyu</creatorcontrib><creatorcontrib>Kim, Jiae</creatorcontrib><creatorcontrib>Che, Jun</creatorcontrib><creatorcontrib>Lee, Sang Eun</creatorcontrib><creatorcontrib>Cho, Yunje</creatorcontrib><title>DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double‐strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 ( Mj Mre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B‐form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid‐body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non‐homologous end joining, and tolerance to DNA‐damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair. Synopsis DNA end tethering and nucleolytic resection at double‐strand break sites are key functions of the conserved MRN (Mre11‐Rad50‐Nbs1) complex mediated by its Mre11 subunit. New crystal structures of Mre11‐DNA complexes reveal an alternative model for Mre11‐DNA complexes, in which Mre11 dimers recognize a single stretch of longer, more physiological DNA substrate. Structures of Mre11 bound to longer DNA molecules show that the Mre11 dimer as a whole recognizes one single molecule of extended B‐form DNA. A structurally conserved basic region constituting the DNA binding interface is important for binding and cleavage of substrates, as well as for in vivo repair functions. Mre11 quaternary structural changes may facilitate DNA end melting and guide broken ends to the nuclease active site. DNA end tethering may require further oligomerization of Mre11 dimers. Graphical Abstract Crystal structures reveal the importance of a novel, conserved interface through which the dimeric MRN complex subunit Mre11 binds a single molecule of longer DNA representing its physiological substrate.</description><subject>Amino Acid Sequence</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Biochemistry</subject><subject>conserved basic region</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonucleic acid</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA end recognition</subject><subject>DNA End-Joining Repair</subject><subject>DNA Mutational Analysis</subject><subject>DNA repair</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Archaeal - metabolism</subject><subject>DSB repair</subject><subject>EMBO13</subject><subject>EMBO40</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Enzymes</subject><subject>Exodeoxyribonucleases - chemistry</subject><subject>Exodeoxyribonucleases - genetics</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Melting</subject><subject>Methanocaldococcus - chemistry</subject><subject>Methanocaldococcus - enzymology</subject><subject>Methanocaldococcus - genetics</subject><subject>Models, Molecular</subject><subject>Models, Structural</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mre11-DNA</subject><subject>Protein Binding</subject><subject>Sequence Alignment</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9v0zAYhi0EYmVw5oYsceGSzXbs_NgBaVu3AtoGBxCIi-XYX1KXxC52wuh_T9aMqiAhTrbs5338WS9Czyk5ooIJdgxdtTpihPKiYGX5AM0oz0jCSC4eohlhGU04LcoD9CTGFSFEFDl9jA6YoCTnOZuhan5zisEZHED7xtneeoerDe6XgK8DUIrdoFtQEbCxHYQTbF20zbKP46b3YyyC3obUVrJWNmBfY6M61YDBo_4pelSrNsKz-_UQfbq8-Hj-Jrl6v3h7fnqVaCFomahMZ4QYww0znGWE81yBqnJSkJpzQ-rxBAgzrC7ziqqq0FpoxUXFBVeKlekhej1510PVgdHg-qBauQ62U2EjvbLyzxtnl7LxPyRnIhVbwat7QfDfB4i97GzU0LbKgR-ipBlNS04YS0f05V_oyg_Bjd-7oxgjaVaykTqeKB18jAHq3TCUyG1_8q4_uetvTLzY_8OO_13YCJxMwK1tYfM_n7y4Pnu3bydTOI4510DYm_qfAyVTxMYefu7eU-GbzPI0F_LzzULm868f5gtO5Zf0F0a_xgo</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Sung, Sihyun</creator><creator>Li, Fuyang</creator><creator>Park, Young Bong</creator><creator>Kim, Jin Seok</creator><creator>Kim, Ae-Kyoung</creator><creator>Song, Ok-kyu</creator><creator>Kim, Jiae</creator><creator>Che, Jun</creator><creator>Lee, Sang Eun</creator><creator>Cho, Yunje</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>BlackWell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141016</creationdate><title>DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA</title><author>Sung, Sihyun ; Li, Fuyang ; Park, Young Bong ; Kim, Jin Seok ; Kim, Ae-Kyoung ; Song, Ok-kyu ; Kim, Jiae ; Che, Jun ; Lee, Sang Eun ; Cho, Yunje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5519-a6c600dd4d2d4260447aeab7080f44d0f044e02d2f97b1ab8cc5ca45b454aa293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Biochemistry</topic><topic>conserved basic region</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonucleic acid</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA end recognition</topic><topic>DNA End-Joining Repair</topic><topic>DNA Mutational Analysis</topic><topic>DNA repair</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Archaeal - metabolism</topic><topic>DSB repair</topic><topic>EMBO13</topic><topic>EMBO40</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Enzymes</topic><topic>Exodeoxyribonucleases - chemistry</topic><topic>Exodeoxyribonucleases - genetics</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Melting</topic><topic>Methanocaldococcus - chemistry</topic><topic>Methanocaldococcus - enzymology</topic><topic>Methanocaldococcus - genetics</topic><topic>Models, Molecular</topic><topic>Models, Structural</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mre11-DNA</topic><topic>Protein Binding</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sung, Sihyun</creatorcontrib><creatorcontrib>Li, Fuyang</creatorcontrib><creatorcontrib>Park, Young Bong</creatorcontrib><creatorcontrib>Kim, Jin Seok</creatorcontrib><creatorcontrib>Kim, Ae-Kyoung</creatorcontrib><creatorcontrib>Song, Ok-kyu</creatorcontrib><creatorcontrib>Kim, Jiae</creatorcontrib><creatorcontrib>Che, Jun</creatorcontrib><creatorcontrib>Lee, Sang Eun</creatorcontrib><creatorcontrib>Cho, Yunje</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sung, Sihyun</au><au>Li, Fuyang</au><au>Park, Young Bong</au><au>Kim, Jin Seok</au><au>Kim, Ae-Kyoung</au><au>Song, Ok-kyu</au><au>Kim, Jiae</au><au>Che, Jun</au><au>Lee, Sang Eun</au><au>Cho, Yunje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2014-10-16</date><risdate>2014</risdate><volume>33</volume><issue>20</issue><spage>2422</spage><epage>2435</epage><pages>2422-2435</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double‐strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 ( Mj Mre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B‐form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid‐body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non‐homologous end joining, and tolerance to DNA‐damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair. Synopsis DNA end tethering and nucleolytic resection at double‐strand break sites are key functions of the conserved MRN (Mre11‐Rad50‐Nbs1) complex mediated by its Mre11 subunit. New crystal structures of Mre11‐DNA complexes reveal an alternative model for Mre11‐DNA complexes, in which Mre11 dimers recognize a single stretch of longer, more physiological DNA substrate. Structures of Mre11 bound to longer DNA molecules show that the Mre11 dimer as a whole recognizes one single molecule of extended B‐form DNA. A structurally conserved basic region constituting the DNA binding interface is important for binding and cleavage of substrates, as well as for in vivo repair functions. Mre11 quaternary structural changes may facilitate DNA end melting and guide broken ends to the nuclease active site. DNA end tethering may require further oligomerization of Mre11 dimers. Graphical Abstract Crystal structures reveal the importance of a novel, conserved interface through which the dimeric MRN complex subunit Mre11 binds a single molecule of longer DNA representing its physiological substrate.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>25107472</pmid><doi>10.15252/embj.201488299</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2014-10, Vol.33 (20), p.2422-2435
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4253529
source Springer Nature OA Free Journals
subjects Amino Acid Sequence
Archaeal Proteins - chemistry
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
Biochemistry
conserved basic region
Crystal structure
Crystallography, X-Ray
Deoxyribonucleic acid
Dimerization
DNA
DNA Breaks, Double-Stranded
DNA end recognition
DNA End-Joining Repair
DNA Mutational Analysis
DNA repair
DNA, Archaeal - genetics
DNA, Archaeal - metabolism
DSB repair
EMBO13
EMBO40
Endodeoxyribonucleases - chemistry
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Enzymes
Exodeoxyribonucleases - chemistry
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - metabolism
Melting
Methanocaldococcus - chemistry
Methanocaldococcus - enzymology
Methanocaldococcus - genetics
Models, Molecular
Models, Structural
Molecular biology
Molecular Sequence Data
Mre11-DNA
Protein Binding
Sequence Alignment
title DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20end%20recognition%20by%20the%20Mre11%20nuclease%20dimer:%20insights%20into%20resection%20and%20repair%20of%20damaged%20DNA&rft.jtitle=The%20EMBO%20journal&rft.au=Sung,%20Sihyun&rft.date=2014-10-16&rft.volume=33&rft.issue=20&rft.spage=2422&rft.epage=2435&rft.pages=2422-2435&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201488299&rft_dat=%3Cproquest_C6C%3E1613940223%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612203692&rft_id=info:pmid/25107472&rfr_iscdi=true