Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model
ABSTRACT Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cog...
Gespeichert in:
Veröffentlicht in: | Journal of comparative neurology (1911) 2014-07, Vol.522 (10), p.2319-2335 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2335 |
---|---|
container_issue | 10 |
container_start_page | 2319 |
container_title | Journal of comparative neurology (1911) |
container_volume | 522 |
creator | Steele, John W. Brautigam, Hannah Short, Jennifer A. Sowa, Allison Shi, Mengxi Yadav, Aniruddha Weaver, Christina M. Westaway, David Fraser, Paul E. St George-Hyslop, Peter H. Gandy, Sam Hof, Patrick R. Dickstein, Dara L. |
description | ABSTRACT
Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wildtype littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid‐β protein, may underlie the observed neuronal loss. J. Comp. Neurol. 522:2319–2335, 2014. © 2014 Wiley Periodicals, Inc.
The authors found a significant decrease in neuronal number in the CA1 of the TgCRND8 mouse along with changes in dendritic spine types and altered expression of GluN1 and GluA2 receptors, suggesting a perturbation of neuronal homeostasis causing early and long‐lasting changes in hippocampal function that may underlie behavioral abnormalities in this model. |
doi_str_mv | 10.1002/cne.23536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4251468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524424461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5146-9751cbbe24280424b32095eb31056fa845e909ffbeb03eaca1d627f0f31453c23</originalsourceid><addsrcrecordid>eNp1kc1u1DAQgC0EokvhwAsgSxyAQ1r_xEl8QaqWZUEqC1SFcrMcZ9J1cZLFdijhNXhh3G67AiQkyyNrvvk040HoMSUHlBB2aHo4YFzw4g6aUSKLTFYFvYtmKUczKYtyDz0I4YIQIiWv7qM9ludUpOwM_Vpo7ybcgva4g27wE26gBRMD1h6wDmEwVkdo8KWNa6xdBJ8eYer1JlqDN06HFG2csO4b3A0OzOiSTHuztjGJxqSxPY5rwKfn85PVqwofuZ9rsB34ZwE3NoAOkCrH67sB9xDda7UL8Ogm7qNPrxen8zfZ8fvl2_nRcWYEzdOQpaCmroHlrCI5y2vOiBRQc0pE0eoqFyCJbNsaasJBG02bgpUtaTnNBTeM76OXW-9mrDtoDPTRa6c23nbaT2rQVv2d6e1anQ_fVc6uGqiS4PmNwA_fRghRdTYYcE73kMZRVKSPTqegCX36D3oxjL5P4yWKliKvSiIT9WJLGT-E4KHdNUOJulq1SqtW16tO7JM_u9-Rt7tNwOEWuLQOpv-b1Hy1uFVm2wobIvzYVWj_VRUlL4U6Wy3V2fJDefL5y0f1jv8GY4fEpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517548709</pqid></control><display><type>article</type><title>Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Steele, John W. ; Brautigam, Hannah ; Short, Jennifer A. ; Sowa, Allison ; Shi, Mengxi ; Yadav, Aniruddha ; Weaver, Christina M. ; Westaway, David ; Fraser, Paul E. ; St George-Hyslop, Peter H. ; Gandy, Sam ; Hof, Patrick R. ; Dickstein, Dara L.</creator><creatorcontrib>Steele, John W. ; Brautigam, Hannah ; Short, Jennifer A. ; Sowa, Allison ; Shi, Mengxi ; Yadav, Aniruddha ; Weaver, Christina M. ; Westaway, David ; Fraser, Paul E. ; St George-Hyslop, Peter H. ; Gandy, Sam ; Hof, Patrick R. ; Dickstein, Dara L.</creatorcontrib><description>ABSTRACT
Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wildtype littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid‐β protein, may underlie the observed neuronal loss. J. Comp. Neurol. 522:2319–2335, 2014. © 2014 Wiley Periodicals, Inc.
The authors found a significant decrease in neuronal number in the CA1 of the TgCRND8 mouse along with changes in dendritic spine types and altered expression of GluN1 and GluA2 receptors, suggesting a perturbation of neuronal homeostasis causing early and long‐lasting changes in hippocampal function that may underlie behavioral abnormalities in this model.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.23536</identifier><identifier>PMID: 24415002</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Alzheimer Disease - pathology ; Alzheimer Disease - physiopathology ; amyloid beta ; Amyloid beta-Protein Precursor - genetics ; Amyloid beta-Protein Precursor - metabolism ; Amyloidosis - metabolism ; Amyloidosis - pathology ; Animals ; Brain - metabolism ; Brain - pathology ; Cell Count ; Cues ; Dendrites - metabolism ; Dendrites - pathology ; dendritic pathology ; Dendritic Spines - metabolism ; Dendritic Spines - pathology ; Disease Models, Animal ; Fear ; Hippocampus - metabolism ; Hippocampus - pathology ; Humans ; Male ; Memory Disorders - pathology ; Memory Disorders - physiopathology ; Mice, Transgenic ; mouse model of dementia ; Nerve Tissue Proteins - metabolism ; neuronal morphology ; Neuronal Plasticity - physiology ; Neurons - metabolism ; Neurons - pathology ; Plaque, Amyloid - metabolism ; Plaque, Amyloid - pathology ; spine pathology</subject><ispartof>Journal of comparative neurology (1911), 2014-07, Vol.522 (10), p.2319-2335</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5146-9751cbbe24280424b32095eb31056fa845e909ffbeb03eaca1d627f0f31453c23</citedby><cites>FETCH-LOGICAL-c5146-9751cbbe24280424b32095eb31056fa845e909ffbeb03eaca1d627f0f31453c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.23536$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.23536$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24415002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steele, John W.</creatorcontrib><creatorcontrib>Brautigam, Hannah</creatorcontrib><creatorcontrib>Short, Jennifer A.</creatorcontrib><creatorcontrib>Sowa, Allison</creatorcontrib><creatorcontrib>Shi, Mengxi</creatorcontrib><creatorcontrib>Yadav, Aniruddha</creatorcontrib><creatorcontrib>Weaver, Christina M.</creatorcontrib><creatorcontrib>Westaway, David</creatorcontrib><creatorcontrib>Fraser, Paul E.</creatorcontrib><creatorcontrib>St George-Hyslop, Peter H.</creatorcontrib><creatorcontrib>Gandy, Sam</creatorcontrib><creatorcontrib>Hof, Patrick R.</creatorcontrib><creatorcontrib>Dickstein, Dara L.</creatorcontrib><title>Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>ABSTRACT
Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wildtype littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid‐β protein, may underlie the observed neuronal loss. J. Comp. Neurol. 522:2319–2335, 2014. © 2014 Wiley Periodicals, Inc.
The authors found a significant decrease in neuronal number in the CA1 of the TgCRND8 mouse along with changes in dendritic spine types and altered expression of GluN1 and GluA2 receptors, suggesting a perturbation of neuronal homeostasis causing early and long‐lasting changes in hippocampal function that may underlie behavioral abnormalities in this model.</description><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - physiopathology</subject><subject>amyloid beta</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>Amyloidosis - metabolism</subject><subject>Amyloidosis - pathology</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cell Count</subject><subject>Cues</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - pathology</subject><subject>dendritic pathology</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - pathology</subject><subject>Disease Models, Animal</subject><subject>Fear</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Humans</subject><subject>Male</subject><subject>Memory Disorders - pathology</subject><subject>Memory Disorders - physiopathology</subject><subject>Mice, Transgenic</subject><subject>mouse model of dementia</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neuronal morphology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Plaque, Amyloid - metabolism</subject><subject>Plaque, Amyloid - pathology</subject><subject>spine pathology</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAQgC0EokvhwAsgSxyAQ1r_xEl8QaqWZUEqC1SFcrMcZ9J1cZLFdijhNXhh3G67AiQkyyNrvvk040HoMSUHlBB2aHo4YFzw4g6aUSKLTFYFvYtmKUczKYtyDz0I4YIQIiWv7qM9ludUpOwM_Vpo7ybcgva4g27wE26gBRMD1h6wDmEwVkdo8KWNa6xdBJ8eYer1JlqDN06HFG2csO4b3A0OzOiSTHuztjGJxqSxPY5rwKfn85PVqwofuZ9rsB34ZwE3NoAOkCrH67sB9xDda7UL8Ogm7qNPrxen8zfZ8fvl2_nRcWYEzdOQpaCmroHlrCI5y2vOiBRQc0pE0eoqFyCJbNsaasJBG02bgpUtaTnNBTeM76OXW-9mrDtoDPTRa6c23nbaT2rQVv2d6e1anQ_fVc6uGqiS4PmNwA_fRghRdTYYcE73kMZRVKSPTqegCX36D3oxjL5P4yWKliKvSiIT9WJLGT-E4KHdNUOJulq1SqtW16tO7JM_u9-Rt7tNwOEWuLQOpv-b1Hy1uFVm2wobIvzYVWj_VRUlL4U6Wy3V2fJDefL5y0f1jv8GY4fEpg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Steele, John W.</creator><creator>Brautigam, Hannah</creator><creator>Short, Jennifer A.</creator><creator>Sowa, Allison</creator><creator>Shi, Mengxi</creator><creator>Yadav, Aniruddha</creator><creator>Weaver, Christina M.</creator><creator>Westaway, David</creator><creator>Fraser, Paul E.</creator><creator>St George-Hyslop, Peter H.</creator><creator>Gandy, Sam</creator><creator>Hof, Patrick R.</creator><creator>Dickstein, Dara L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model</title><author>Steele, John W. ; Brautigam, Hannah ; Short, Jennifer A. ; Sowa, Allison ; Shi, Mengxi ; Yadav, Aniruddha ; Weaver, Christina M. ; Westaway, David ; Fraser, Paul E. ; St George-Hyslop, Peter H. ; Gandy, Sam ; Hof, Patrick R. ; Dickstein, Dara L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5146-9751cbbe24280424b32095eb31056fa845e909ffbeb03eaca1d627f0f31453c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - physiopathology</topic><topic>amyloid beta</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>Amyloidosis - metabolism</topic><topic>Amyloidosis - pathology</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cell Count</topic><topic>Cues</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - pathology</topic><topic>dendritic pathology</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - pathology</topic><topic>Disease Models, Animal</topic><topic>Fear</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Humans</topic><topic>Male</topic><topic>Memory Disorders - pathology</topic><topic>Memory Disorders - physiopathology</topic><topic>Mice, Transgenic</topic><topic>mouse model of dementia</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neuronal morphology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Plaque, Amyloid - metabolism</topic><topic>Plaque, Amyloid - pathology</topic><topic>spine pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steele, John W.</creatorcontrib><creatorcontrib>Brautigam, Hannah</creatorcontrib><creatorcontrib>Short, Jennifer A.</creatorcontrib><creatorcontrib>Sowa, Allison</creatorcontrib><creatorcontrib>Shi, Mengxi</creatorcontrib><creatorcontrib>Yadav, Aniruddha</creatorcontrib><creatorcontrib>Weaver, Christina M.</creatorcontrib><creatorcontrib>Westaway, David</creatorcontrib><creatorcontrib>Fraser, Paul E.</creatorcontrib><creatorcontrib>St George-Hyslop, Peter H.</creatorcontrib><creatorcontrib>Gandy, Sam</creatorcontrib><creatorcontrib>Hof, Patrick R.</creatorcontrib><creatorcontrib>Dickstein, Dara L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steele, John W.</au><au>Brautigam, Hannah</au><au>Short, Jennifer A.</au><au>Sowa, Allison</au><au>Shi, Mengxi</au><au>Yadav, Aniruddha</au><au>Weaver, Christina M.</au><au>Westaway, David</au><au>Fraser, Paul E.</au><au>St George-Hyslop, Peter H.</au><au>Gandy, Sam</au><au>Hof, Patrick R.</au><au>Dickstein, Dara L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>522</volume><issue>10</issue><spage>2319</spage><epage>2335</epage><pages>2319-2335</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>ABSTRACT
Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wildtype littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid‐β protein, may underlie the observed neuronal loss. J. Comp. Neurol. 522:2319–2335, 2014. © 2014 Wiley Periodicals, Inc.
The authors found a significant decrease in neuronal number in the CA1 of the TgCRND8 mouse along with changes in dendritic spine types and altered expression of GluN1 and GluA2 receptors, suggesting a perturbation of neuronal homeostasis causing early and long‐lasting changes in hippocampal function that may underlie behavioral abnormalities in this model.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24415002</pmid><doi>10.1002/cne.23536</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2014-07, Vol.522 (10), p.2319-2335 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4251468 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alzheimer Disease - pathology Alzheimer Disease - physiopathology amyloid beta Amyloid beta-Protein Precursor - genetics Amyloid beta-Protein Precursor - metabolism Amyloidosis - metabolism Amyloidosis - pathology Animals Brain - metabolism Brain - pathology Cell Count Cues Dendrites - metabolism Dendrites - pathology dendritic pathology Dendritic Spines - metabolism Dendritic Spines - pathology Disease Models, Animal Fear Hippocampus - metabolism Hippocampus - pathology Humans Male Memory Disorders - pathology Memory Disorders - physiopathology Mice, Transgenic mouse model of dementia Nerve Tissue Proteins - metabolism neuronal morphology Neuronal Plasticity - physiology Neurons - metabolism Neurons - pathology Plaque, Amyloid - metabolism Plaque, Amyloid - pathology spine pathology |
title | Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20fear%20memory%20defects%20are%20associated%20with%20altered%20synaptic%20plasticity%20and%20molecular%20architecture%20in%20the%20TgCRND8%20Alzheimer's%20disease%20mouse%20model&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Steele,%20John%20W.&rft.date=2014-07-01&rft.volume=522&rft.issue=10&rft.spage=2319&rft.epage=2335&rft.pages=2319-2335&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.23536&rft_dat=%3Cproquest_pubme%3E1524424461%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517548709&rft_id=info:pmid/24415002&rfr_iscdi=true |