Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis

Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2014-08, Vol.15 (1), p.684-684
Hauptverfasser: Jäger, Dominik, Förstner, Konrad U, Sharma, Cynthia M, Santangelo, Thomas J, Reeve, John N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 1
container_start_page 684
container_title BMC genomics
container_volume 15
creator Jäger, Dominik
Förstner, Konrad U
Sharma, Cynthia M
Santangelo, Thomas J
Reeve, John N
description Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤ 50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon.
doi_str_mv 10.1186/1471-2164-15-684
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4247193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539566977</galeid><sourcerecordid>A539566977</sourcerecordid><originalsourceid>FETCH-LOGICAL-b754t-893486dd376f2101463ab34b8c3a2225fdc1e79c9613343b8be4edbb96b11d7b3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EoqVw54QicYFDSsZfcS5I1YpCpUogaM-W7Tgbt0kc7ATRf1-HLUuDioR8sDXzzOuZ10boJRTHAIK_A1pCjoHTHFjOBX2EDvehx_fOB-hZjFdFAaXA7Ck6wAxwyag4RJdfgutVuMmmoIZoghsn39usV2Pmm2xqbdbejDakQ-j92LrOmUwF0yrrh-ziV9R4Y-aYXftaXatgh-jic_SkUV20L-72I3R5-uFi8yk___zxbHNynut0-5SLilDB65qUvMFQAOVEaUK1MERhjFlTG7BlZSoOhFCihbbU1lpXXAPUpSZH6P1Od5x1b2tjhzRGJ8fdTNIrJ9eZwbVy639IipM1FUkCm52Adv4fAuuM8b1cbJWLrRKYTK4nlTd3bQT_fbZxkr2LxnadGqyfowSOMS94ycV_oCCAAWNVQl__hV75OQzJz4XimFUCxB9qqzor3dD41KdZROUJIxXjvCrLRB0_QKVV294ZP9jGpfiq4O2qIDGT_Tlt1RyjPPv2dc0WO9YEH2Owzd4_KOTyTx9y7NX9h9sX_P6Y5BZKGuIm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616259818</pqid></control><display><type>article</type><title>Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Jäger, Dominik ; Förstner, Konrad U ; Sharma, Cynthia M ; Santangelo, Thomas J ; Reeve, John N</creator><creatorcontrib>Jäger, Dominik ; Förstner, Konrad U ; Sharma, Cynthia M ; Santangelo, Thomas J ; Reeve, John N</creatorcontrib><description>Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified &gt;2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤ 50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. The results identify &gt;2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2164-15-684</identifier><identifier>PMID: 25127548</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>5' Untranslated Regions - genetics ; Academic libraries ; Analysis ; Automation ; Base Sequence ; Colleges &amp; universities ; Expected values ; Gene expression ; Gene Expression Profiling ; Genes ; Genetic aspects ; Genetic transcription ; Genomes ; Genomic libraries ; Genomics ; Information storage ; Messenger RNA ; Metabolism ; Physiological aspects ; Promoter Regions, Genetic - genetics ; RNA sequencing ; RNA, Antisense - genetics ; RNA, Small Untranslated - genetics ; Thermococcus ; Thermococcus - genetics ; Transcription Initiation Site ; Transcription, Genetic</subject><ispartof>BMC genomics, 2014-08, Vol.15 (1), p.684-684</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Jäger et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Jäger et al.; licensee BioMed Central Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b754t-893486dd376f2101463ab34b8c3a2225fdc1e79c9613343b8be4edbb96b11d7b3</citedby><cites>FETCH-LOGICAL-b754t-893486dd376f2101463ab34b8c3a2225fdc1e79c9613343b8be4edbb96b11d7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247193/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247193/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25127548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jäger, Dominik</creatorcontrib><creatorcontrib>Förstner, Konrad U</creatorcontrib><creatorcontrib>Sharma, Cynthia M</creatorcontrib><creatorcontrib>Santangelo, Thomas J</creatorcontrib><creatorcontrib>Reeve, John N</creatorcontrib><title>Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified &gt;2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤ 50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. The results identify &gt;2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon.</description><subject>5' Untranslated Regions - genetics</subject><subject>Academic libraries</subject><subject>Analysis</subject><subject>Automation</subject><subject>Base Sequence</subject><subject>Colleges &amp; universities</subject><subject>Expected values</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomic libraries</subject><subject>Genomics</subject><subject>Information storage</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>RNA sequencing</subject><subject>RNA, Antisense - genetics</subject><subject>RNA, Small Untranslated - genetics</subject><subject>Thermococcus</subject><subject>Thermococcus - genetics</subject><subject>Transcription Initiation Site</subject><subject>Transcription, Genetic</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1v1DAQhi0EoqVw54QicYFDSsZfcS5I1YpCpUogaM-W7Tgbt0kc7ATRf1-HLUuDioR8sDXzzOuZ10boJRTHAIK_A1pCjoHTHFjOBX2EDvehx_fOB-hZjFdFAaXA7Ck6wAxwyag4RJdfgutVuMmmoIZoghsn39usV2Pmm2xqbdbejDakQ-j92LrOmUwF0yrrh-ziV9R4Y-aYXftaXatgh-jic_SkUV20L-72I3R5-uFi8yk___zxbHNynut0-5SLilDB65qUvMFQAOVEaUK1MERhjFlTG7BlZSoOhFCihbbU1lpXXAPUpSZH6P1Od5x1b2tjhzRGJ8fdTNIrJ9eZwbVy639IipM1FUkCm52Adv4fAuuM8b1cbJWLrRKYTK4nlTd3bQT_fbZxkr2LxnadGqyfowSOMS94ycV_oCCAAWNVQl__hV75OQzJz4XimFUCxB9qqzor3dD41KdZROUJIxXjvCrLRB0_QKVV294ZP9jGpfiq4O2qIDGT_Tlt1RyjPPv2dc0WO9YEH2Owzd4_KOTyTx9y7NX9h9sX_P6Y5BZKGuIm</recordid><startdate>20140816</startdate><enddate>20140816</enddate><creator>Jäger, Dominik</creator><creator>Förstner, Konrad U</creator><creator>Sharma, Cynthia M</creator><creator>Santangelo, Thomas J</creator><creator>Reeve, John N</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140816</creationdate><title>Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis</title><author>Jäger, Dominik ; Förstner, Konrad U ; Sharma, Cynthia M ; Santangelo, Thomas J ; Reeve, John N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b754t-893486dd376f2101463ab34b8c3a2225fdc1e79c9613343b8be4edbb96b11d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>5' Untranslated Regions - genetics</topic><topic>Academic libraries</topic><topic>Analysis</topic><topic>Automation</topic><topic>Base Sequence</topic><topic>Colleges &amp; universities</topic><topic>Expected values</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomic libraries</topic><topic>Genomics</topic><topic>Information storage</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>RNA sequencing</topic><topic>RNA, Antisense - genetics</topic><topic>RNA, Small Untranslated - genetics</topic><topic>Thermococcus</topic><topic>Thermococcus - genetics</topic><topic>Transcription Initiation Site</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jäger, Dominik</creatorcontrib><creatorcontrib>Förstner, Konrad U</creatorcontrib><creatorcontrib>Sharma, Cynthia M</creatorcontrib><creatorcontrib>Santangelo, Thomas J</creatorcontrib><creatorcontrib>Reeve, John N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jäger, Dominik</au><au>Förstner, Konrad U</au><au>Sharma, Cynthia M</au><au>Santangelo, Thomas J</au><au>Reeve, John N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2014-08-16</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>684</spage><epage>684</epage><pages>684-684</pages><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified &gt;2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤ 50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. The results identify &gt;2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25127548</pmid><doi>10.1186/1471-2164-15-684</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2014-08, Vol.15 (1), p.684-684
issn 1471-2164
1471-2164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4247193
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects 5' Untranslated Regions - genetics
Academic libraries
Analysis
Automation
Base Sequence
Colleges & universities
Expected values
Gene expression
Gene Expression Profiling
Genes
Genetic aspects
Genetic transcription
Genomes
Genomic libraries
Genomics
Information storage
Messenger RNA
Metabolism
Physiological aspects
Promoter Regions, Genetic - genetics
RNA sequencing
RNA, Antisense - genetics
RNA, Small Untranslated - genetics
Thermococcus
Thermococcus - genetics
Transcription Initiation Site
Transcription, Genetic
title Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primary%20transcriptome%20map%20of%20the%20hyperthermophilic%20archaeon%20Thermococcus%20kodakarensis&rft.jtitle=BMC%20genomics&rft.au=J%C3%A4ger,%20Dominik&rft.date=2014-08-16&rft.volume=15&rft.issue=1&rft.spage=684&rft.epage=684&rft.pages=684-684&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/1471-2164-15-684&rft_dat=%3Cgale_pubme%3EA539566977%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616259818&rft_id=info:pmid/25127548&rft_galeid=A539566977&rfr_iscdi=true