ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue
Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2014-12, Vol.42 (21), p.13339-13352 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13352 |
---|---|
container_issue | 21 |
container_start_page | 13339 |
container_title | Nucleic acids research |
container_volume | 42 |
creator | Kurita, Daisuke Chadani, Yuhei Muto, Akira Abo, Tatsuhiko Himeno, Hyouta |
description | Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3' end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3' end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding. |
doi_str_mv | 10.1093/nar/gku1069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4245945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1628882391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-1171fe1955c3952e59a29f22f7d1ed0c2a9334bc72db52d0ba76a5f3ab2ee9523</originalsourceid><addsrcrecordid>eNqNkctLxDAQh4Mouj5O3iVHQap5NG1zEZbFF4iC6MVLSNPJbrRNNGkF_eutuorePGXIfPNjhg-hXUoOKZH8yOt4NH8cKCnkCppQXrAslwVbRRPCicgoyasNtJnSAyE0pyJfRxtMcCEELSbofhrtFEcwYe7dGyTcLwC32jziYHF3czXFzn_-fdZmob2HFmvbQ8Q3pwzXzjfOz7ENEUdXhxQ6GOOSGWAbrVndJthZvlvo7vTkdnaeXV6fXcyml5kRgvQZpSW1QKUQhkvBQEjNpGXMlg2FhhimJed5bUrW1II1pNZloYXlumYA4wDfQsdfuU9D3UFjwPdRt-opuk7HVxW0U3873i3UPLyonOVC5mIM2F8GxPA8QOpV55KBttUewpAUrUhV8qIs_oEWrKoqxiUd0YMv1MSQUgT7sxEl6kOcGsWppbiR3vt9xA_7bYq_AwBslIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1628882391</pqid></control><display><type>article</type><title>ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kurita, Daisuke ; Chadani, Yuhei ; Muto, Akira ; Abo, Tatsuhiko ; Himeno, Hyouta</creator><creatorcontrib>Kurita, Daisuke ; Chadani, Yuhei ; Muto, Akira ; Abo, Tatsuhiko ; Himeno, Hyouta</creatorcontrib><description>Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3' end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3' end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku1069</identifier><identifier>PMID: 25355516</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; Cysteine - genetics ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Models, Molecular ; Mutation ; Peptide Termination Factors - metabolism ; Protein Binding ; Ribosomes - chemistry ; Ribosomes - metabolism ; RNA ; RNA, Messenger - chemistry ; RNA, Messenger - metabolism ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism</subject><ispartof>Nucleic acids research, 2014-12, Vol.42 (21), p.13339-13352</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-1171fe1955c3952e59a29f22f7d1ed0c2a9334bc72db52d0ba76a5f3ab2ee9523</citedby><cites>FETCH-LOGICAL-c550t-1171fe1955c3952e59a29f22f7d1ed0c2a9334bc72db52d0ba76a5f3ab2ee9523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25355516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurita, Daisuke</creatorcontrib><creatorcontrib>Chadani, Yuhei</creatorcontrib><creatorcontrib>Muto, Akira</creatorcontrib><creatorcontrib>Abo, Tatsuhiko</creatorcontrib><creatorcontrib>Himeno, Hyouta</creatorcontrib><title>ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3' end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3' end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.</description><subject>Binding Sites</subject><subject>Cysteine - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Peptide Termination Factors - metabolism</subject><subject>Protein Binding</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctLxDAQh4Mouj5O3iVHQap5NG1zEZbFF4iC6MVLSNPJbrRNNGkF_eutuorePGXIfPNjhg-hXUoOKZH8yOt4NH8cKCnkCppQXrAslwVbRRPCicgoyasNtJnSAyE0pyJfRxtMcCEELSbofhrtFEcwYe7dGyTcLwC32jziYHF3czXFzn_-fdZmob2HFmvbQ8Q3pwzXzjfOz7ENEUdXhxQ6GOOSGWAbrVndJthZvlvo7vTkdnaeXV6fXcyml5kRgvQZpSW1QKUQhkvBQEjNpGXMlg2FhhimJed5bUrW1II1pNZloYXlumYA4wDfQsdfuU9D3UFjwPdRt-opuk7HVxW0U3873i3UPLyonOVC5mIM2F8GxPA8QOpV55KBttUewpAUrUhV8qIs_oEWrKoqxiUd0YMv1MSQUgT7sxEl6kOcGsWppbiR3vt9xA_7bYq_AwBslIA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kurita, Daisuke</creator><creator>Chadani, Yuhei</creator><creator>Muto, Akira</creator><creator>Abo, Tatsuhiko</creator><creator>Himeno, Hyouta</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20141201</creationdate><title>ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue</title><author>Kurita, Daisuke ; Chadani, Yuhei ; Muto, Akira ; Abo, Tatsuhiko ; Himeno, Hyouta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-1171fe1955c3952e59a29f22f7d1ed0c2a9334bc72db52d0ba76a5f3ab2ee9523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Binding Sites</topic><topic>Cysteine - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Peptide Termination Factors - metabolism</topic><topic>Protein Binding</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurita, Daisuke</creatorcontrib><creatorcontrib>Chadani, Yuhei</creatorcontrib><creatorcontrib>Muto, Akira</creatorcontrib><creatorcontrib>Abo, Tatsuhiko</creatorcontrib><creatorcontrib>Himeno, Hyouta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurita, Daisuke</au><au>Chadani, Yuhei</au><au>Muto, Akira</au><au>Abo, Tatsuhiko</au><au>Himeno, Hyouta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>42</volume><issue>21</issue><spage>13339</spage><epage>13352</epage><pages>13339-13352</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3' end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3' end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25355516</pmid><doi>10.1093/nar/gku1069</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2014-12, Vol.42 (21), p.13339-13352 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4245945 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Binding Sites Cysteine - genetics Escherichia coli Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Models, Molecular Mutation Peptide Termination Factors - metabolism Protein Binding Ribosomes - chemistry Ribosomes - metabolism RNA RNA, Messenger - chemistry RNA, Messenger - metabolism RNA-Binding Proteins - chemistry RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism |
title | ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ArfA%20recognizes%20the%20lack%20of%20mRNA%20in%20the%20mRNA%20channel%20after%20RF2%20binding%20for%20ribosome%20rescue&rft.jtitle=Nucleic%20acids%20research&rft.au=Kurita,%20Daisuke&rft.date=2014-12-01&rft.volume=42&rft.issue=21&rft.spage=13339&rft.epage=13352&rft.pages=13339-13352&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku1069&rft_dat=%3Cproquest_pubme%3E1628882391%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1628882391&rft_id=info:pmid/25355516&rfr_iscdi=true |