Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress
Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cyto...
Gespeichert in:
Veröffentlicht in: | Cell 2014-07, Vol.158 (3), p.534-548 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 3 |
container_start_page | 534 |
container_title | Cell |
container_volume | 158 |
creator | Ghosh, Rajarshi Wang, Likun Wang, Eric S. Perera, B. Gayani K. Igbaria, Aeid Morita, Shuhei Prado, Kris Thamsen, Maike Caswell, Deborah Macias, Hector Weiberth, Kurt F. Gliedt, Micah J. Alavi, Marcel V. Hari, Sanjay B. Mitra, Arinjay K. Bhhatarai, Barun Schürer, Stephan C. Snapp, Erik L. Gould, Douglas B. German, Michael S. Backes, Bradley J. Maly, Dustin J. Oakes, Scott A. Papa, Feroz R. |
description | Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.
[Display omitted]
•ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models
Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa. |
doi_str_mv | 10.1016/j.cell.2014.07.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4244221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867414008782</els_id><sourcerecordid>2000205489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EoqHwAiyQl2xmuHbszIyEkKoopZEqQOFna3k8dxpHM3awPZH6WLwIz1SHlAo2sPLinvNd33MIecmgZMAWb3alwWEoOTBRQlUC8EdkxqCpCsEq_pjMABpe1ItKnJFnMe4AoJZSPiVnXAKrGYgZiRfD4GPCYA1du61tbbLeUd_TtEW63qzYzx9080FHpJ8CRgwHjHSZ19JvVrd2sOmWatfRy8mZX85uCtbd0JXr_H7QcczcDSZrpmEa6eeUGfE5edLrIeKL-_ecfL1cfVleFdcf36-XF9eFkbJORcfRIDPSVC3gnJueSy4qg_kKLrpW9BKRibpqGr1AI-tKyLnWbVdrswCOcn5O3p24-6kdsTPoUtCD2gc76nCrvLbq74mzW3XjD0pwIThnGfD6HhD89wljUqONx8y1Qz9FxXOiHKSom_9KmZQMuBTzOkv5SWqCjzFg__AjBupYrNqpo1Mdi1VQqbwkm179ecuD5XeTWfD2JMCc6MFiUNFYdAY7G9Ak1Xn7L_4dJFm3EQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551025438</pqid></control><display><type>article</type><title>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ghosh, Rajarshi ; Wang, Likun ; Wang, Eric S. ; Perera, B. Gayani K. ; Igbaria, Aeid ; Morita, Shuhei ; Prado, Kris ; Thamsen, Maike ; Caswell, Deborah ; Macias, Hector ; Weiberth, Kurt F. ; Gliedt, Micah J. ; Alavi, Marcel V. ; Hari, Sanjay B. ; Mitra, Arinjay K. ; Bhhatarai, Barun ; Schürer, Stephan C. ; Snapp, Erik L. ; Gould, Douglas B. ; German, Michael S. ; Backes, Bradley J. ; Maly, Dustin J. ; Oakes, Scott A. ; Papa, Feroz R.</creator><creatorcontrib>Ghosh, Rajarshi ; Wang, Likun ; Wang, Eric S. ; Perera, B. Gayani K. ; Igbaria, Aeid ; Morita, Shuhei ; Prado, Kris ; Thamsen, Maike ; Caswell, Deborah ; Macias, Hector ; Weiberth, Kurt F. ; Gliedt, Micah J. ; Alavi, Marcel V. ; Hari, Sanjay B. ; Mitra, Arinjay K. ; Bhhatarai, Barun ; Schürer, Stephan C. ; Snapp, Erik L. ; Gould, Douglas B. ; German, Michael S. ; Backes, Bradley J. ; Maly, Dustin J. ; Oakes, Scott A. ; Papa, Feroz R.</creatorcontrib><description>Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.
[Display omitted]
•ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models
Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2014.07.002</identifier><identifier>PMID: 25018104</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation ; animal disease models ; Animals ; apoptosis ; Apoptosis - drug effects ; Cell Line ; cell viability ; diabetes ; endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Endoribonucleases - antagonists & inhibitors ; Endoribonucleases - chemistry ; Endoribonucleases - metabolism ; Enzyme Activation - drug effects ; Humans ; hyperglycemia ; insulin ; islets of Langerhans ; Islets of Langerhans - metabolism ; macular degeneration ; Male ; messenger RNA ; Mice ; oligomerization ; photoreceptors ; Protein Kinase Inhibitors - pharmacology ; protein phosphorylation ; Protein Serine-Threonine Kinases - antagonists & inhibitors ; Protein Serine-Threonine Kinases - chemistry ; Protein Serine-Threonine Kinases - metabolism ; Rats ; Retina - metabolism ; ribonucleases ; Ribonucleases - antagonists & inhibitors ; transcription factors</subject><ispartof>Cell, 2014-07, Vol.158 (3), p.534-548</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</citedby><cites>FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867414008782$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25018104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Rajarshi</creatorcontrib><creatorcontrib>Wang, Likun</creatorcontrib><creatorcontrib>Wang, Eric S.</creatorcontrib><creatorcontrib>Perera, B. Gayani K.</creatorcontrib><creatorcontrib>Igbaria, Aeid</creatorcontrib><creatorcontrib>Morita, Shuhei</creatorcontrib><creatorcontrib>Prado, Kris</creatorcontrib><creatorcontrib>Thamsen, Maike</creatorcontrib><creatorcontrib>Caswell, Deborah</creatorcontrib><creatorcontrib>Macias, Hector</creatorcontrib><creatorcontrib>Weiberth, Kurt F.</creatorcontrib><creatorcontrib>Gliedt, Micah J.</creatorcontrib><creatorcontrib>Alavi, Marcel V.</creatorcontrib><creatorcontrib>Hari, Sanjay B.</creatorcontrib><creatorcontrib>Mitra, Arinjay K.</creatorcontrib><creatorcontrib>Bhhatarai, Barun</creatorcontrib><creatorcontrib>Schürer, Stephan C.</creatorcontrib><creatorcontrib>Snapp, Erik L.</creatorcontrib><creatorcontrib>Gould, Douglas B.</creatorcontrib><creatorcontrib>German, Michael S.</creatorcontrib><creatorcontrib>Backes, Bradley J.</creatorcontrib><creatorcontrib>Maly, Dustin J.</creatorcontrib><creatorcontrib>Oakes, Scott A.</creatorcontrib><creatorcontrib>Papa, Feroz R.</creatorcontrib><title>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</title><title>Cell</title><addtitle>Cell</addtitle><description>Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.
[Display omitted]
•ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models
Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa.</description><subject>Allosteric Regulation</subject><subject>animal disease models</subject><subject>Animals</subject><subject>apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cell Line</subject><subject>cell viability</subject><subject>diabetes</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Endoribonucleases - antagonists & inhibitors</subject><subject>Endoribonucleases - chemistry</subject><subject>Endoribonucleases - metabolism</subject><subject>Enzyme Activation - drug effects</subject><subject>Humans</subject><subject>hyperglycemia</subject><subject>insulin</subject><subject>islets of Langerhans</subject><subject>Islets of Langerhans - metabolism</subject><subject>macular degeneration</subject><subject>Male</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>oligomerization</subject><subject>photoreceptors</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>protein phosphorylation</subject><subject>Protein Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>Protein Serine-Threonine Kinases - chemistry</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Rats</subject><subject>Retina - metabolism</subject><subject>ribonucleases</subject><subject>Ribonucleases - antagonists & inhibitors</subject><subject>transcription factors</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS0EoqHwAiyQl2xmuHbszIyEkKoopZEqQOFna3k8dxpHM3awPZH6WLwIz1SHlAo2sPLinvNd33MIecmgZMAWb3alwWEoOTBRQlUC8EdkxqCpCsEq_pjMABpe1ItKnJFnMe4AoJZSPiVnXAKrGYgZiRfD4GPCYA1du61tbbLeUd_TtEW63qzYzx9080FHpJ8CRgwHjHSZ19JvVrd2sOmWatfRy8mZX85uCtbd0JXr_H7QcczcDSZrpmEa6eeUGfE5edLrIeKL-_ecfL1cfVleFdcf36-XF9eFkbJORcfRIDPSVC3gnJueSy4qg_kKLrpW9BKRibpqGr1AI-tKyLnWbVdrswCOcn5O3p24-6kdsTPoUtCD2gc76nCrvLbq74mzW3XjD0pwIThnGfD6HhD89wljUqONx8y1Qz9FxXOiHKSom_9KmZQMuBTzOkv5SWqCjzFg__AjBupYrNqpo1Mdi1VQqbwkm179ecuD5XeTWfD2JMCc6MFiUNFYdAY7G9Ak1Xn7L_4dJFm3EQ</recordid><startdate>20140731</startdate><enddate>20140731</enddate><creator>Ghosh, Rajarshi</creator><creator>Wang, Likun</creator><creator>Wang, Eric S.</creator><creator>Perera, B. Gayani K.</creator><creator>Igbaria, Aeid</creator><creator>Morita, Shuhei</creator><creator>Prado, Kris</creator><creator>Thamsen, Maike</creator><creator>Caswell, Deborah</creator><creator>Macias, Hector</creator><creator>Weiberth, Kurt F.</creator><creator>Gliedt, Micah J.</creator><creator>Alavi, Marcel V.</creator><creator>Hari, Sanjay B.</creator><creator>Mitra, Arinjay K.</creator><creator>Bhhatarai, Barun</creator><creator>Schürer, Stephan C.</creator><creator>Snapp, Erik L.</creator><creator>Gould, Douglas B.</creator><creator>German, Michael S.</creator><creator>Backes, Bradley J.</creator><creator>Maly, Dustin J.</creator><creator>Oakes, Scott A.</creator><creator>Papa, Feroz R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140731</creationdate><title>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</title><author>Ghosh, Rajarshi ; Wang, Likun ; Wang, Eric S. ; Perera, B. Gayani K. ; Igbaria, Aeid ; Morita, Shuhei ; Prado, Kris ; Thamsen, Maike ; Caswell, Deborah ; Macias, Hector ; Weiberth, Kurt F. ; Gliedt, Micah J. ; Alavi, Marcel V. ; Hari, Sanjay B. ; Mitra, Arinjay K. ; Bhhatarai, Barun ; Schürer, Stephan C. ; Snapp, Erik L. ; Gould, Douglas B. ; German, Michael S. ; Backes, Bradley J. ; Maly, Dustin J. ; Oakes, Scott A. ; Papa, Feroz R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Allosteric Regulation</topic><topic>animal disease models</topic><topic>Animals</topic><topic>apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cell Line</topic><topic>cell viability</topic><topic>diabetes</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Endoribonucleases - antagonists & inhibitors</topic><topic>Endoribonucleases - chemistry</topic><topic>Endoribonucleases - metabolism</topic><topic>Enzyme Activation - drug effects</topic><topic>Humans</topic><topic>hyperglycemia</topic><topic>insulin</topic><topic>islets of Langerhans</topic><topic>Islets of Langerhans - metabolism</topic><topic>macular degeneration</topic><topic>Male</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>oligomerization</topic><topic>photoreceptors</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>protein phosphorylation</topic><topic>Protein Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>Protein Serine-Threonine Kinases - chemistry</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Rats</topic><topic>Retina - metabolism</topic><topic>ribonucleases</topic><topic>Ribonucleases - antagonists & inhibitors</topic><topic>transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Rajarshi</creatorcontrib><creatorcontrib>Wang, Likun</creatorcontrib><creatorcontrib>Wang, Eric S.</creatorcontrib><creatorcontrib>Perera, B. Gayani K.</creatorcontrib><creatorcontrib>Igbaria, Aeid</creatorcontrib><creatorcontrib>Morita, Shuhei</creatorcontrib><creatorcontrib>Prado, Kris</creatorcontrib><creatorcontrib>Thamsen, Maike</creatorcontrib><creatorcontrib>Caswell, Deborah</creatorcontrib><creatorcontrib>Macias, Hector</creatorcontrib><creatorcontrib>Weiberth, Kurt F.</creatorcontrib><creatorcontrib>Gliedt, Micah J.</creatorcontrib><creatorcontrib>Alavi, Marcel V.</creatorcontrib><creatorcontrib>Hari, Sanjay B.</creatorcontrib><creatorcontrib>Mitra, Arinjay K.</creatorcontrib><creatorcontrib>Bhhatarai, Barun</creatorcontrib><creatorcontrib>Schürer, Stephan C.</creatorcontrib><creatorcontrib>Snapp, Erik L.</creatorcontrib><creatorcontrib>Gould, Douglas B.</creatorcontrib><creatorcontrib>German, Michael S.</creatorcontrib><creatorcontrib>Backes, Bradley J.</creatorcontrib><creatorcontrib>Maly, Dustin J.</creatorcontrib><creatorcontrib>Oakes, Scott A.</creatorcontrib><creatorcontrib>Papa, Feroz R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Rajarshi</au><au>Wang, Likun</au><au>Wang, Eric S.</au><au>Perera, B. Gayani K.</au><au>Igbaria, Aeid</au><au>Morita, Shuhei</au><au>Prado, Kris</au><au>Thamsen, Maike</au><au>Caswell, Deborah</au><au>Macias, Hector</au><au>Weiberth, Kurt F.</au><au>Gliedt, Micah J.</au><au>Alavi, Marcel V.</au><au>Hari, Sanjay B.</au><au>Mitra, Arinjay K.</au><au>Bhhatarai, Barun</au><au>Schürer, Stephan C.</au><au>Snapp, Erik L.</au><au>Gould, Douglas B.</au><au>German, Michael S.</au><au>Backes, Bradley J.</au><au>Maly, Dustin J.</au><au>Oakes, Scott A.</au><au>Papa, Feroz R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2014-07-31</date><risdate>2014</risdate><volume>158</volume><issue>3</issue><spage>534</spage><epage>548</epage><pages>534-548</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.
[Display omitted]
•ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models
Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25018104</pmid><doi>10.1016/j.cell.2014.07.002</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2014-07, Vol.158 (3), p.534-548 |
issn | 0092-8674 1097-4172 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4244221 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Allosteric Regulation animal disease models Animals apoptosis Apoptosis - drug effects Cell Line cell viability diabetes endoplasmic reticulum Endoplasmic Reticulum Stress Endoribonucleases - antagonists & inhibitors Endoribonucleases - chemistry Endoribonucleases - metabolism Enzyme Activation - drug effects Humans hyperglycemia insulin islets of Langerhans Islets of Langerhans - metabolism macular degeneration Male messenger RNA Mice oligomerization photoreceptors Protein Kinase Inhibitors - pharmacology protein phosphorylation Protein Serine-Threonine Kinases - antagonists & inhibitors Protein Serine-Threonine Kinases - chemistry Protein Serine-Threonine Kinases - metabolism Rats Retina - metabolism ribonucleases Ribonucleases - antagonists & inhibitors transcription factors |
title | Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20Inhibition%20of%20the%20IRE1%CE%B1%20RNase%20Preserves%20Cell%20Viability%20and%20Function%20during%20Endoplasmic%20Reticulum%20Stress&rft.jtitle=Cell&rft.au=Ghosh,%20Rajarshi&rft.date=2014-07-31&rft.volume=158&rft.issue=3&rft.spage=534&rft.epage=548&rft.pages=534-548&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2014.07.002&rft_dat=%3Cproquest_pubme%3E2000205489%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551025438&rft_id=info:pmid/25018104&rft_els_id=S0092867414008782&rfr_iscdi=true |