Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress

Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cyto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2014-07, Vol.158 (3), p.534-548
Hauptverfasser: Ghosh, Rajarshi, Wang, Likun, Wang, Eric S., Perera, B. Gayani K., Igbaria, Aeid, Morita, Shuhei, Prado, Kris, Thamsen, Maike, Caswell, Deborah, Macias, Hector, Weiberth, Kurt F., Gliedt, Micah J., Alavi, Marcel V., Hari, Sanjay B., Mitra, Arinjay K., Bhhatarai, Barun, Schürer, Stephan C., Snapp, Erik L., Gould, Douglas B., German, Michael S., Backes, Bradley J., Maly, Dustin J., Oakes, Scott A., Papa, Feroz R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 3
container_start_page 534
container_title Cell
container_volume 158
creator Ghosh, Rajarshi
Wang, Likun
Wang, Eric S.
Perera, B. Gayani K.
Igbaria, Aeid
Morita, Shuhei
Prado, Kris
Thamsen, Maike
Caswell, Deborah
Macias, Hector
Weiberth, Kurt F.
Gliedt, Micah J.
Alavi, Marcel V.
Hari, Sanjay B.
Mitra, Arinjay K.
Bhhatarai, Barun
Schürer, Stephan C.
Snapp, Erik L.
Gould, Douglas B.
German, Michael S.
Backes, Bradley J.
Maly, Dustin J.
Oakes, Scott A.
Papa, Feroz R.
description Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration. [Display omitted] •ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa.
doi_str_mv 10.1016/j.cell.2014.07.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4244221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867414008782</els_id><sourcerecordid>2000205489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EoqHwAiyQl2xmuHbszIyEkKoopZEqQOFna3k8dxpHM3awPZH6WLwIz1SHlAo2sPLinvNd33MIecmgZMAWb3alwWEoOTBRQlUC8EdkxqCpCsEq_pjMABpe1ItKnJFnMe4AoJZSPiVnXAKrGYgZiRfD4GPCYA1du61tbbLeUd_TtEW63qzYzx9080FHpJ8CRgwHjHSZ19JvVrd2sOmWatfRy8mZX85uCtbd0JXr_H7QcczcDSZrpmEa6eeUGfE5edLrIeKL-_ecfL1cfVleFdcf36-XF9eFkbJORcfRIDPSVC3gnJueSy4qg_kKLrpW9BKRibpqGr1AI-tKyLnWbVdrswCOcn5O3p24-6kdsTPoUtCD2gc76nCrvLbq74mzW3XjD0pwIThnGfD6HhD89wljUqONx8y1Qz9FxXOiHKSom_9KmZQMuBTzOkv5SWqCjzFg__AjBupYrNqpo1Mdi1VQqbwkm179ecuD5XeTWfD2JMCc6MFiUNFYdAY7G9Ak1Xn7L_4dJFm3EQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551025438</pqid></control><display><type>article</type><title>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ghosh, Rajarshi ; Wang, Likun ; Wang, Eric S. ; Perera, B. Gayani K. ; Igbaria, Aeid ; Morita, Shuhei ; Prado, Kris ; Thamsen, Maike ; Caswell, Deborah ; Macias, Hector ; Weiberth, Kurt F. ; Gliedt, Micah J. ; Alavi, Marcel V. ; Hari, Sanjay B. ; Mitra, Arinjay K. ; Bhhatarai, Barun ; Schürer, Stephan C. ; Snapp, Erik L. ; Gould, Douglas B. ; German, Michael S. ; Backes, Bradley J. ; Maly, Dustin J. ; Oakes, Scott A. ; Papa, Feroz R.</creator><creatorcontrib>Ghosh, Rajarshi ; Wang, Likun ; Wang, Eric S. ; Perera, B. Gayani K. ; Igbaria, Aeid ; Morita, Shuhei ; Prado, Kris ; Thamsen, Maike ; Caswell, Deborah ; Macias, Hector ; Weiberth, Kurt F. ; Gliedt, Micah J. ; Alavi, Marcel V. ; Hari, Sanjay B. ; Mitra, Arinjay K. ; Bhhatarai, Barun ; Schürer, Stephan C. ; Snapp, Erik L. ; Gould, Douglas B. ; German, Michael S. ; Backes, Bradley J. ; Maly, Dustin J. ; Oakes, Scott A. ; Papa, Feroz R.</creatorcontrib><description>Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration. [Display omitted] •ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2014.07.002</identifier><identifier>PMID: 25018104</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation ; animal disease models ; Animals ; apoptosis ; Apoptosis - drug effects ; Cell Line ; cell viability ; diabetes ; endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Endoribonucleases - antagonists &amp; inhibitors ; Endoribonucleases - chemistry ; Endoribonucleases - metabolism ; Enzyme Activation - drug effects ; Humans ; hyperglycemia ; insulin ; islets of Langerhans ; Islets of Langerhans - metabolism ; macular degeneration ; Male ; messenger RNA ; Mice ; oligomerization ; photoreceptors ; Protein Kinase Inhibitors - pharmacology ; protein phosphorylation ; Protein Serine-Threonine Kinases - antagonists &amp; inhibitors ; Protein Serine-Threonine Kinases - chemistry ; Protein Serine-Threonine Kinases - metabolism ; Rats ; Retina - metabolism ; ribonucleases ; Ribonucleases - antagonists &amp; inhibitors ; transcription factors</subject><ispartof>Cell, 2014-07, Vol.158 (3), p.534-548</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</citedby><cites>FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867414008782$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25018104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Rajarshi</creatorcontrib><creatorcontrib>Wang, Likun</creatorcontrib><creatorcontrib>Wang, Eric S.</creatorcontrib><creatorcontrib>Perera, B. Gayani K.</creatorcontrib><creatorcontrib>Igbaria, Aeid</creatorcontrib><creatorcontrib>Morita, Shuhei</creatorcontrib><creatorcontrib>Prado, Kris</creatorcontrib><creatorcontrib>Thamsen, Maike</creatorcontrib><creatorcontrib>Caswell, Deborah</creatorcontrib><creatorcontrib>Macias, Hector</creatorcontrib><creatorcontrib>Weiberth, Kurt F.</creatorcontrib><creatorcontrib>Gliedt, Micah J.</creatorcontrib><creatorcontrib>Alavi, Marcel V.</creatorcontrib><creatorcontrib>Hari, Sanjay B.</creatorcontrib><creatorcontrib>Mitra, Arinjay K.</creatorcontrib><creatorcontrib>Bhhatarai, Barun</creatorcontrib><creatorcontrib>Schürer, Stephan C.</creatorcontrib><creatorcontrib>Snapp, Erik L.</creatorcontrib><creatorcontrib>Gould, Douglas B.</creatorcontrib><creatorcontrib>German, Michael S.</creatorcontrib><creatorcontrib>Backes, Bradley J.</creatorcontrib><creatorcontrib>Maly, Dustin J.</creatorcontrib><creatorcontrib>Oakes, Scott A.</creatorcontrib><creatorcontrib>Papa, Feroz R.</creatorcontrib><title>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</title><title>Cell</title><addtitle>Cell</addtitle><description>Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration. [Display omitted] •ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa.</description><subject>Allosteric Regulation</subject><subject>animal disease models</subject><subject>Animals</subject><subject>apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Cell Line</subject><subject>cell viability</subject><subject>diabetes</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Endoribonucleases - antagonists &amp; inhibitors</subject><subject>Endoribonucleases - chemistry</subject><subject>Endoribonucleases - metabolism</subject><subject>Enzyme Activation - drug effects</subject><subject>Humans</subject><subject>hyperglycemia</subject><subject>insulin</subject><subject>islets of Langerhans</subject><subject>Islets of Langerhans - metabolism</subject><subject>macular degeneration</subject><subject>Male</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>oligomerization</subject><subject>photoreceptors</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>protein phosphorylation</subject><subject>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>Protein Serine-Threonine Kinases - chemistry</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Rats</subject><subject>Retina - metabolism</subject><subject>ribonucleases</subject><subject>Ribonucleases - antagonists &amp; inhibitors</subject><subject>transcription factors</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS0EoqHwAiyQl2xmuHbszIyEkKoopZEqQOFna3k8dxpHM3awPZH6WLwIz1SHlAo2sPLinvNd33MIecmgZMAWb3alwWEoOTBRQlUC8EdkxqCpCsEq_pjMABpe1ItKnJFnMe4AoJZSPiVnXAKrGYgZiRfD4GPCYA1du61tbbLeUd_TtEW63qzYzx9080FHpJ8CRgwHjHSZ19JvVrd2sOmWatfRy8mZX85uCtbd0JXr_H7QcczcDSZrpmEa6eeUGfE5edLrIeKL-_ecfL1cfVleFdcf36-XF9eFkbJORcfRIDPSVC3gnJueSy4qg_kKLrpW9BKRibpqGr1AI-tKyLnWbVdrswCOcn5O3p24-6kdsTPoUtCD2gc76nCrvLbq74mzW3XjD0pwIThnGfD6HhD89wljUqONx8y1Qz9FxXOiHKSom_9KmZQMuBTzOkv5SWqCjzFg__AjBupYrNqpo1Mdi1VQqbwkm179ecuD5XeTWfD2JMCc6MFiUNFYdAY7G9Ak1Xn7L_4dJFm3EQ</recordid><startdate>20140731</startdate><enddate>20140731</enddate><creator>Ghosh, Rajarshi</creator><creator>Wang, Likun</creator><creator>Wang, Eric S.</creator><creator>Perera, B. Gayani K.</creator><creator>Igbaria, Aeid</creator><creator>Morita, Shuhei</creator><creator>Prado, Kris</creator><creator>Thamsen, Maike</creator><creator>Caswell, Deborah</creator><creator>Macias, Hector</creator><creator>Weiberth, Kurt F.</creator><creator>Gliedt, Micah J.</creator><creator>Alavi, Marcel V.</creator><creator>Hari, Sanjay B.</creator><creator>Mitra, Arinjay K.</creator><creator>Bhhatarai, Barun</creator><creator>Schürer, Stephan C.</creator><creator>Snapp, Erik L.</creator><creator>Gould, Douglas B.</creator><creator>German, Michael S.</creator><creator>Backes, Bradley J.</creator><creator>Maly, Dustin J.</creator><creator>Oakes, Scott A.</creator><creator>Papa, Feroz R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140731</creationdate><title>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</title><author>Ghosh, Rajarshi ; Wang, Likun ; Wang, Eric S. ; Perera, B. Gayani K. ; Igbaria, Aeid ; Morita, Shuhei ; Prado, Kris ; Thamsen, Maike ; Caswell, Deborah ; Macias, Hector ; Weiberth, Kurt F. ; Gliedt, Micah J. ; Alavi, Marcel V. ; Hari, Sanjay B. ; Mitra, Arinjay K. ; Bhhatarai, Barun ; Schürer, Stephan C. ; Snapp, Erik L. ; Gould, Douglas B. ; German, Michael S. ; Backes, Bradley J. ; Maly, Dustin J. ; Oakes, Scott A. ; Papa, Feroz R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-d2ece1c5c7b0e32cf25247ce00824db4f5ee148799a6ec587453aabd8ac602e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Allosteric Regulation</topic><topic>animal disease models</topic><topic>Animals</topic><topic>apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Cell Line</topic><topic>cell viability</topic><topic>diabetes</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Endoribonucleases - antagonists &amp; inhibitors</topic><topic>Endoribonucleases - chemistry</topic><topic>Endoribonucleases - metabolism</topic><topic>Enzyme Activation - drug effects</topic><topic>Humans</topic><topic>hyperglycemia</topic><topic>insulin</topic><topic>islets of Langerhans</topic><topic>Islets of Langerhans - metabolism</topic><topic>macular degeneration</topic><topic>Male</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>oligomerization</topic><topic>photoreceptors</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>protein phosphorylation</topic><topic>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>Protein Serine-Threonine Kinases - chemistry</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Rats</topic><topic>Retina - metabolism</topic><topic>ribonucleases</topic><topic>Ribonucleases - antagonists &amp; inhibitors</topic><topic>transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Rajarshi</creatorcontrib><creatorcontrib>Wang, Likun</creatorcontrib><creatorcontrib>Wang, Eric S.</creatorcontrib><creatorcontrib>Perera, B. Gayani K.</creatorcontrib><creatorcontrib>Igbaria, Aeid</creatorcontrib><creatorcontrib>Morita, Shuhei</creatorcontrib><creatorcontrib>Prado, Kris</creatorcontrib><creatorcontrib>Thamsen, Maike</creatorcontrib><creatorcontrib>Caswell, Deborah</creatorcontrib><creatorcontrib>Macias, Hector</creatorcontrib><creatorcontrib>Weiberth, Kurt F.</creatorcontrib><creatorcontrib>Gliedt, Micah J.</creatorcontrib><creatorcontrib>Alavi, Marcel V.</creatorcontrib><creatorcontrib>Hari, Sanjay B.</creatorcontrib><creatorcontrib>Mitra, Arinjay K.</creatorcontrib><creatorcontrib>Bhhatarai, Barun</creatorcontrib><creatorcontrib>Schürer, Stephan C.</creatorcontrib><creatorcontrib>Snapp, Erik L.</creatorcontrib><creatorcontrib>Gould, Douglas B.</creatorcontrib><creatorcontrib>German, Michael S.</creatorcontrib><creatorcontrib>Backes, Bradley J.</creatorcontrib><creatorcontrib>Maly, Dustin J.</creatorcontrib><creatorcontrib>Oakes, Scott A.</creatorcontrib><creatorcontrib>Papa, Feroz R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Rajarshi</au><au>Wang, Likun</au><au>Wang, Eric S.</au><au>Perera, B. Gayani K.</au><au>Igbaria, Aeid</au><au>Morita, Shuhei</au><au>Prado, Kris</au><au>Thamsen, Maike</au><au>Caswell, Deborah</au><au>Macias, Hector</au><au>Weiberth, Kurt F.</au><au>Gliedt, Micah J.</au><au>Alavi, Marcel V.</au><au>Hari, Sanjay B.</au><au>Mitra, Arinjay K.</au><au>Bhhatarai, Barun</au><au>Schürer, Stephan C.</au><au>Snapp, Erik L.</au><au>Gould, Douglas B.</au><au>German, Michael S.</au><au>Backes, Bradley J.</au><au>Maly, Dustin J.</au><au>Oakes, Scott A.</au><au>Papa, Feroz R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2014-07-31</date><risdate>2014</risdate><volume>158</volume><issue>3</issue><spage>534</spage><epage>548</epage><pages>534-548</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators—KIRAs—that allosterically inhibit IRE1α’s RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic β cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration. [Display omitted] •ER stress triggers a “terminal UPR” via hyperactivation of IRE1α, an ER kinase/RNase•Hyperactive IRE1α’s RNase degrades ER-localized mRNAs and miRNAs to cause apoptosis•Kinase-Inhibiting RNase-Attenuators (KIRAs) reduce IRE1α’s RNase activity•KIRA6—an advanced KIRA—preserves cell survival and function in many ER stress models Allosteric inhibitors of the unfolded protein response sensor IRE1α promote cell survival and function under ER stress and in rodent models of diabetes and retinitis pigmentosa.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25018104</pmid><doi>10.1016/j.cell.2014.07.002</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2014-07, Vol.158 (3), p.534-548
issn 0092-8674
1097-4172
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4244221
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Allosteric Regulation
animal disease models
Animals
apoptosis
Apoptosis - drug effects
Cell Line
cell viability
diabetes
endoplasmic reticulum
Endoplasmic Reticulum Stress
Endoribonucleases - antagonists & inhibitors
Endoribonucleases - chemistry
Endoribonucleases - metabolism
Enzyme Activation - drug effects
Humans
hyperglycemia
insulin
islets of Langerhans
Islets of Langerhans - metabolism
macular degeneration
Male
messenger RNA
Mice
oligomerization
photoreceptors
Protein Kinase Inhibitors - pharmacology
protein phosphorylation
Protein Serine-Threonine Kinases - antagonists & inhibitors
Protein Serine-Threonine Kinases - chemistry
Protein Serine-Threonine Kinases - metabolism
Rats
Retina - metabolism
ribonucleases
Ribonucleases - antagonists & inhibitors
transcription factors
title Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20Inhibition%20of%20the%20IRE1%CE%B1%20RNase%20Preserves%20Cell%20Viability%20and%20Function%20during%20Endoplasmic%20Reticulum%20Stress&rft.jtitle=Cell&rft.au=Ghosh,%20Rajarshi&rft.date=2014-07-31&rft.volume=158&rft.issue=3&rft.spage=534&rft.epage=548&rft.pages=534-548&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2014.07.002&rft_dat=%3Cproquest_pubme%3E2000205489%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551025438&rft_id=info:pmid/25018104&rft_els_id=S0092867414008782&rfr_iscdi=true