Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo
The striatum is comprised of medium-sized spiny projection neurons (MSNs) and several types of interneuron, and receives massive glutamatergic input from the cerebral cortex. Understanding of striatal function requires definition of the electrophysiological properties of neurochemically identified i...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2012-09, Vol.32 (38), p.13221-13236 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13236 |
---|---|
container_issue | 38 |
container_start_page | 13221 |
container_title | The Journal of neuroscience |
container_volume | 32 |
creator | Sharott, Andrew Doig, Natalie M Mallet, Nicolas Magill, Peter J |
description | The striatum is comprised of medium-sized spiny projection neurons (MSNs) and several types of interneuron, and receives massive glutamatergic input from the cerebral cortex. Understanding of striatal function requires definition of the electrophysiological properties of neurochemically identified interneurons sampled in the same context of ongoing cortical activity in vivo. To address this, we recorded the firing of cholinergic interneurons (expressing choline acetyltransferase; ChAT) and GABAergic interneurons expressing parvalbumin (PV) or nitric oxide synthase (NOS), as well as MSNs, in anesthetized rats during cortically defined brain states. Depending on the cortical state, these interneurons were partly distinguished from each other, and MSNs, on the basis of firing rate and/or pattern. During slow-wave activity (SWA), ChAT+ interneurons, and some PV+ and NOS+ interneurons, were tonically active; NOS+ interneurons fired prominent bursts but, contrary to investigations in vitro, these were not typical low-threshold spike bursts. Identified MSNs, and other PV+ and NOS+ interneurons, were phasically active. Contrasting with ChAT+ interneurons, whose firing showed poor brain state dependency, PV+ and NOS+ interneurons displayed robust firing increases and decreases, respectively, upon spontaneous or driven transitions from SWA to cortical activation. The firing of most neurons was phase locked to cortical slow oscillations, but only PV+ and ChAT+ interneurons also fired in time with cortical spindle and gamma oscillations. Complementing this diverse temporal coupling, each interneuron type exhibited distinct responses to cortical stimulation. Thus, these striatal interneuron types have distinct temporal signatures in vivo, including relationships to spontaneous and driven cortical activities, which likely underpin their specialized contributions to striatal microcircuit function. |
doi_str_mv | 10.1523/JNEUROSCI.2440-12.2012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4242971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551619478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-50503faa5aaf81af86ee3dfe611da33d9369a6bec07e9454241108a73d29b5683</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-hZJHX2ab_zN5EWSptlIsVPscsjN3uldmkzXJjohf3ixbF33y4RIu554fORxCLjhbci3k5afPVw_3d19WN0uhFGu4WArGxTOyqKpthGL8OVkw0bLGqFadkVc5f2OMtYy3L8mZENZKJbsF-XUPky8YQ97gLtM1lB8AgZYN0BEThkcaR4oDhIIjwkBzSeiLnyiGAinAPlUr9aEquxiKDxD3x31IOFdSH1PBvhp8X3DGgpCrl844x9fkxeinDG-e3nPy8OHq6-q6ub37eLN6f9v0SovSaKaZHL3X3o8dr2MA5DCC4XzwUg5WGuvNGnrWglVaCcU563wrB2HX2nTynLw7cnf79RaGvoZJfnK7hFuffrro0f2rBNy4xzi7ihK25RXw9gmQ4vc95OK2mHuYpmNcx7XmhlvVdv8_ZcYK1gl-oJrjaZ9izgnG0484c4eS3alkdyjZceEOJVfjxd95TrY_rcrf42un0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1069208211</pqid></control><display><type>article</type><title>Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sharott, Andrew ; Doig, Natalie M ; Mallet, Nicolas ; Magill, Peter J</creator><creatorcontrib>Sharott, Andrew ; Doig, Natalie M ; Mallet, Nicolas ; Magill, Peter J</creatorcontrib><description>The striatum is comprised of medium-sized spiny projection neurons (MSNs) and several types of interneuron, and receives massive glutamatergic input from the cerebral cortex. Understanding of striatal function requires definition of the electrophysiological properties of neurochemically identified interneurons sampled in the same context of ongoing cortical activity in vivo. To address this, we recorded the firing of cholinergic interneurons (expressing choline acetyltransferase; ChAT) and GABAergic interneurons expressing parvalbumin (PV) or nitric oxide synthase (NOS), as well as MSNs, in anesthetized rats during cortically defined brain states. Depending on the cortical state, these interneurons were partly distinguished from each other, and MSNs, on the basis of firing rate and/or pattern. During slow-wave activity (SWA), ChAT+ interneurons, and some PV+ and NOS+ interneurons, were tonically active; NOS+ interneurons fired prominent bursts but, contrary to investigations in vitro, these were not typical low-threshold spike bursts. Identified MSNs, and other PV+ and NOS+ interneurons, were phasically active. Contrasting with ChAT+ interneurons, whose firing showed poor brain state dependency, PV+ and NOS+ interneurons displayed robust firing increases and decreases, respectively, upon spontaneous or driven transitions from SWA to cortical activation. The firing of most neurons was phase locked to cortical slow oscillations, but only PV+ and ChAT+ interneurons also fired in time with cortical spindle and gamma oscillations. Complementing this diverse temporal coupling, each interneuron type exhibited distinct responses to cortical stimulation. Thus, these striatal interneuron types have distinct temporal signatures in vivo, including relationships to spontaneous and driven cortical activities, which likely underpin their specialized contributions to striatal microcircuit function.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2440-12.2012</identifier><identifier>PMID: 22993438</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Biotin - analogs & derivatives ; Biotin - metabolism ; Brain Waves - physiology ; Calbindin 2 ; Cerebral Cortex - physiology ; Choline O-Acetyltransferase - metabolism ; Corpus Striatum - cytology ; Electric Stimulation - methods ; Electrocardiography ; Functional Laterality ; Hindlimb - innervation ; In Vitro Techniques ; Interneurons - classification ; Interneurons - physiology ; Male ; Neural Pathways - physiology ; Neuropeptide Y - metabolism ; Nitric Oxide Synthase - metabolism ; Parvalbumins - metabolism ; Physical Stimulation ; Rats ; Rats, Sprague-Dawley ; S100 Calcium Binding Protein G - metabolism ; Statistics, Nonparametric</subject><ispartof>The Journal of neuroscience, 2012-09, Vol.32 (38), p.13221-13236</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/3213221-16$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-50503faa5aaf81af86ee3dfe611da33d9369a6bec07e9454241108a73d29b5683</citedby><cites>FETCH-LOGICAL-c452t-50503faa5aaf81af86ee3dfe611da33d9369a6bec07e9454241108a73d29b5683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242971/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242971/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22993438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharott, Andrew</creatorcontrib><creatorcontrib>Doig, Natalie M</creatorcontrib><creatorcontrib>Mallet, Nicolas</creatorcontrib><creatorcontrib>Magill, Peter J</creatorcontrib><title>Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The striatum is comprised of medium-sized spiny projection neurons (MSNs) and several types of interneuron, and receives massive glutamatergic input from the cerebral cortex. Understanding of striatal function requires definition of the electrophysiological properties of neurochemically identified interneurons sampled in the same context of ongoing cortical activity in vivo. To address this, we recorded the firing of cholinergic interneurons (expressing choline acetyltransferase; ChAT) and GABAergic interneurons expressing parvalbumin (PV) or nitric oxide synthase (NOS), as well as MSNs, in anesthetized rats during cortically defined brain states. Depending on the cortical state, these interneurons were partly distinguished from each other, and MSNs, on the basis of firing rate and/or pattern. During slow-wave activity (SWA), ChAT+ interneurons, and some PV+ and NOS+ interneurons, were tonically active; NOS+ interneurons fired prominent bursts but, contrary to investigations in vitro, these were not typical low-threshold spike bursts. Identified MSNs, and other PV+ and NOS+ interneurons, were phasically active. Contrasting with ChAT+ interneurons, whose firing showed poor brain state dependency, PV+ and NOS+ interneurons displayed robust firing increases and decreases, respectively, upon spontaneous or driven transitions from SWA to cortical activation. The firing of most neurons was phase locked to cortical slow oscillations, but only PV+ and ChAT+ interneurons also fired in time with cortical spindle and gamma oscillations. Complementing this diverse temporal coupling, each interneuron type exhibited distinct responses to cortical stimulation. Thus, these striatal interneuron types have distinct temporal signatures in vivo, including relationships to spontaneous and driven cortical activities, which likely underpin their specialized contributions to striatal microcircuit function.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biotin - analogs & derivatives</subject><subject>Biotin - metabolism</subject><subject>Brain Waves - physiology</subject><subject>Calbindin 2</subject><subject>Cerebral Cortex - physiology</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Corpus Striatum - cytology</subject><subject>Electric Stimulation - methods</subject><subject>Electrocardiography</subject><subject>Functional Laterality</subject><subject>Hindlimb - innervation</subject><subject>In Vitro Techniques</subject><subject>Interneurons - classification</subject><subject>Interneurons - physiology</subject><subject>Male</subject><subject>Neural Pathways - physiology</subject><subject>Neuropeptide Y - metabolism</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Parvalbumins - metabolism</subject><subject>Physical Stimulation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>S100 Calcium Binding Protein G - metabolism</subject><subject>Statistics, Nonparametric</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxYModq1-hZJHX2ab_zN5EWSptlIsVPscsjN3uldmkzXJjohf3ixbF33y4RIu554fORxCLjhbci3k5afPVw_3d19WN0uhFGu4WArGxTOyqKpthGL8OVkw0bLGqFadkVc5f2OMtYy3L8mZENZKJbsF-XUPky8YQ97gLtM1lB8AgZYN0BEThkcaR4oDhIIjwkBzSeiLnyiGAinAPlUr9aEquxiKDxD3x31IOFdSH1PBvhp8X3DGgpCrl844x9fkxeinDG-e3nPy8OHq6-q6ub37eLN6f9v0SovSaKaZHL3X3o8dr2MA5DCC4XzwUg5WGuvNGnrWglVaCcU563wrB2HX2nTynLw7cnf79RaGvoZJfnK7hFuffrro0f2rBNy4xzi7ihK25RXw9gmQ4vc95OK2mHuYpmNcx7XmhlvVdv8_ZcYK1gl-oJrjaZ9izgnG0484c4eS3alkdyjZceEOJVfjxd95TrY_rcrf42un0g</recordid><startdate>20120919</startdate><enddate>20120919</enddate><creator>Sharott, Andrew</creator><creator>Doig, Natalie M</creator><creator>Mallet, Nicolas</creator><creator>Magill, Peter J</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120919</creationdate><title>Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo</title><author>Sharott, Andrew ; Doig, Natalie M ; Mallet, Nicolas ; Magill, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-50503faa5aaf81af86ee3dfe611da33d9369a6bec07e9454241108a73d29b5683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biotin - analogs & derivatives</topic><topic>Biotin - metabolism</topic><topic>Brain Waves - physiology</topic><topic>Calbindin 2</topic><topic>Cerebral Cortex - physiology</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Corpus Striatum - cytology</topic><topic>Electric Stimulation - methods</topic><topic>Electrocardiography</topic><topic>Functional Laterality</topic><topic>Hindlimb - innervation</topic><topic>In Vitro Techniques</topic><topic>Interneurons - classification</topic><topic>Interneurons - physiology</topic><topic>Male</topic><topic>Neural Pathways - physiology</topic><topic>Neuropeptide Y - metabolism</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Parvalbumins - metabolism</topic><topic>Physical Stimulation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>S100 Calcium Binding Protein G - metabolism</topic><topic>Statistics, Nonparametric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharott, Andrew</creatorcontrib><creatorcontrib>Doig, Natalie M</creatorcontrib><creatorcontrib>Mallet, Nicolas</creatorcontrib><creatorcontrib>Magill, Peter J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharott, Andrew</au><au>Doig, Natalie M</au><au>Mallet, Nicolas</au><au>Magill, Peter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-09-19</date><risdate>2012</risdate><volume>32</volume><issue>38</issue><spage>13221</spage><epage>13236</epage><pages>13221-13236</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The striatum is comprised of medium-sized spiny projection neurons (MSNs) and several types of interneuron, and receives massive glutamatergic input from the cerebral cortex. Understanding of striatal function requires definition of the electrophysiological properties of neurochemically identified interneurons sampled in the same context of ongoing cortical activity in vivo. To address this, we recorded the firing of cholinergic interneurons (expressing choline acetyltransferase; ChAT) and GABAergic interneurons expressing parvalbumin (PV) or nitric oxide synthase (NOS), as well as MSNs, in anesthetized rats during cortically defined brain states. Depending on the cortical state, these interneurons were partly distinguished from each other, and MSNs, on the basis of firing rate and/or pattern. During slow-wave activity (SWA), ChAT+ interneurons, and some PV+ and NOS+ interneurons, were tonically active; NOS+ interneurons fired prominent bursts but, contrary to investigations in vitro, these were not typical low-threshold spike bursts. Identified MSNs, and other PV+ and NOS+ interneurons, were phasically active. Contrasting with ChAT+ interneurons, whose firing showed poor brain state dependency, PV+ and NOS+ interneurons displayed robust firing increases and decreases, respectively, upon spontaneous or driven transitions from SWA to cortical activation. The firing of most neurons was phase locked to cortical slow oscillations, but only PV+ and ChAT+ interneurons also fired in time with cortical spindle and gamma oscillations. Complementing this diverse temporal coupling, each interneuron type exhibited distinct responses to cortical stimulation. Thus, these striatal interneuron types have distinct temporal signatures in vivo, including relationships to spontaneous and driven cortical activities, which likely underpin their specialized contributions to striatal microcircuit function.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22993438</pmid><doi>10.1523/JNEUROSCI.2440-12.2012</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2012-09, Vol.32 (38), p.13221-13236 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4242971 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Action Potentials - physiology Animals Biotin - analogs & derivatives Biotin - metabolism Brain Waves - physiology Calbindin 2 Cerebral Cortex - physiology Choline O-Acetyltransferase - metabolism Corpus Striatum - cytology Electric Stimulation - methods Electrocardiography Functional Laterality Hindlimb - innervation In Vitro Techniques Interneurons - classification Interneurons - physiology Male Neural Pathways - physiology Neuropeptide Y - metabolism Nitric Oxide Synthase - metabolism Parvalbumins - metabolism Physical Stimulation Rats Rats, Sprague-Dawley S100 Calcium Binding Protein G - metabolism Statistics, Nonparametric |
title | Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20between%20the%20firing%20of%20identified%20striatal%20interneurons%20and%20spontaneous%20and%20driven%20cortical%20activities%20in%20vivo&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Sharott,%20Andrew&rft.date=2012-09-19&rft.volume=32&rft.issue=38&rft.spage=13221&rft.epage=13236&rft.pages=13221-13236&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2440-12.2012&rft_dat=%3Cproquest_pubme%3E1551619478%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1069208211&rft_id=info:pmid/22993438&rfr_iscdi=true |