Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways

Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g. , elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro ; however, direct mechanical stimulation i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-11, Vol.4 (1), p.7128-7128, Article 7128
Hauptverfasser: Kilinc, Devrim, Blasiak, Agata, O'Mahony, James J., Lee, Gil U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7128
container_issue 1
container_start_page 7128
container_title Scientific reports
container_volume 4
creator Kilinc, Devrim
Blasiak, Agata
O'Mahony, James J.
Lee, Gil U.
description Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g. , elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro ; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.
doi_str_mv 10.1038/srep07128
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4241520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898075940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</originalsourceid><addsrcrecordid>eNplkVFvUyEcxW-Mxi1zD34BQ-KLmlwHXOiFF5Ou6lxStXHzmfwvF1qWFjrgWvcl_Myj6dZU5YU_Ob8cDpyqeknwe4IbcZaiWeOWUPGkOqaY8Zo2lD49mI-q05RucFmcSkbk8-qIckZaIclx9WcaNmjmdPBmk4NH12Hj_BwFiybfrtD4d_AJwRycTxl9dNYOaSuD79HVEC1oU5-HoZx-mLVZLo3PqYy3g4smobww6NIvXOeyK9bF82vIIaJZDNk4X49TCtpBNj2aQV5s4C69qJ5ZWCZz-rCfVD8_f7qefKmn3y8uJ-NprVkjcg0j1uoRbTvea6o5xqJlQCgbMaut7AynTdcK3RrMtGyE7lkH0AMFy0Fo1jYn1Yed73roVqbXJXiEpVpHt4J4pwI49bfi3ULNwy_FKCOc4mLw5sEghtvBpKxWLunyBeBNGJIiJZ0UjElW0Nf_oDdhiL48TxEhBW65ZFvDtztKx5BKp3YfhmC1LVrtiy7sq8P0e_Kx1gK82wGpSH5u4sGV_7ndA9bvtNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898075940</pqid></control><display><type>article</type><title>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Kilinc, Devrim ; Blasiak, Agata ; O'Mahony, James J. ; Lee, Gil U.</creator><creatorcontrib>Kilinc, Devrim ; Blasiak, Agata ; O'Mahony, James J. ; Lee, Gil U.</creatorcontrib><description>Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g. , elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro ; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep07128</identifier><identifier>PMID: 25417891</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 14/1 ; 14/34 ; 14/63 ; 631/1647/2204/2209 ; 631/1647/277 ; 631/378/2571/2576 ; 639/166/985 ; Amides - pharmacology ; Animals ; Axon guidance ; Axons ; Axons - drug effects ; Axons - physiology ; Cell adhesion &amp; migration ; Cell adhesion molecules ; Cells, Cultured ; Central nervous system ; Central Nervous System - metabolism ; Chondroitin sulfate ; Chondroitin Sulfates - chemistry ; Chondroitin Sulfates - metabolism ; Contractility ; Cortex ; Diffusion ; Elongation ; Enzyme inhibitors ; Growth cones ; Humanities and Social Sciences ; Kinesin ; Mechanical stimuli ; Mice ; Microfluidic Analytical Techniques ; Microfluidics ; Models, Biological ; Molecular Motor Proteins - antagonists &amp; inhibitors ; Molecular Motor Proteins - metabolism ; Motor task performance ; multidisciplinary ; Neurons - cytology ; Proteoglycans ; Pyridines - pharmacology ; Repellents ; rhoA GTP-Binding Protein - antagonists &amp; inhibitors ; rhoA GTP-Binding Protein - metabolism ; RhoA protein ; Science ; Semaphorin-3A - metabolism ; Sulfates</subject><ispartof>Scientific reports, 2014-11, Vol.4 (1), p.7128-7128, Article 7128</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</citedby><cites>FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25417891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kilinc, Devrim</creatorcontrib><creatorcontrib>Blasiak, Agata</creatorcontrib><creatorcontrib>O'Mahony, James J.</creatorcontrib><creatorcontrib>Lee, Gil U.</creatorcontrib><title>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g. , elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro ; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.</description><subject>13/62</subject><subject>14/1</subject><subject>14/34</subject><subject>14/63</subject><subject>631/1647/2204/2209</subject><subject>631/1647/277</subject><subject>631/378/2571/2576</subject><subject>639/166/985</subject><subject>Amides - pharmacology</subject><subject>Animals</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Axons - drug effects</subject><subject>Axons - physiology</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell adhesion molecules</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Central Nervous System - metabolism</subject><subject>Chondroitin sulfate</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Chondroitin Sulfates - metabolism</subject><subject>Contractility</subject><subject>Cortex</subject><subject>Diffusion</subject><subject>Elongation</subject><subject>Enzyme inhibitors</subject><subject>Growth cones</subject><subject>Humanities and Social Sciences</subject><subject>Kinesin</subject><subject>Mechanical stimuli</subject><subject>Mice</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Models, Biological</subject><subject>Molecular Motor Proteins - antagonists &amp; inhibitors</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>Motor task performance</subject><subject>multidisciplinary</subject><subject>Neurons - cytology</subject><subject>Proteoglycans</subject><subject>Pyridines - pharmacology</subject><subject>Repellents</subject><subject>rhoA GTP-Binding Protein - antagonists &amp; inhibitors</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA protein</subject><subject>Science</subject><subject>Semaphorin-3A - metabolism</subject><subject>Sulfates</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkVFvUyEcxW-Mxi1zD34BQ-KLmlwHXOiFF5Ou6lxStXHzmfwvF1qWFjrgWvcl_Myj6dZU5YU_Ob8cDpyqeknwe4IbcZaiWeOWUPGkOqaY8Zo2lD49mI-q05RucFmcSkbk8-qIckZaIclx9WcaNmjmdPBmk4NH12Hj_BwFiybfrtD4d_AJwRycTxl9dNYOaSuD79HVEC1oU5-HoZx-mLVZLo3PqYy3g4smobww6NIvXOeyK9bF82vIIaJZDNk4X49TCtpBNj2aQV5s4C69qJ5ZWCZz-rCfVD8_f7qefKmn3y8uJ-NprVkjcg0j1uoRbTvea6o5xqJlQCgbMaut7AynTdcK3RrMtGyE7lkH0AMFy0Fo1jYn1Yed73roVqbXJXiEpVpHt4J4pwI49bfi3ULNwy_FKCOc4mLw5sEghtvBpKxWLunyBeBNGJIiJZ0UjElW0Nf_oDdhiL48TxEhBW65ZFvDtztKx5BKp3YfhmC1LVrtiy7sq8P0e_Kx1gK82wGpSH5u4sGV_7ndA9bvtNw</recordid><startdate>20141124</startdate><enddate>20141124</enddate><creator>Kilinc, Devrim</creator><creator>Blasiak, Agata</creator><creator>O'Mahony, James J.</creator><creator>Lee, Gil U.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141124</creationdate><title>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</title><author>Kilinc, Devrim ; Blasiak, Agata ; O'Mahony, James J. ; Lee, Gil U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/62</topic><topic>14/1</topic><topic>14/34</topic><topic>14/63</topic><topic>631/1647/2204/2209</topic><topic>631/1647/277</topic><topic>631/378/2571/2576</topic><topic>639/166/985</topic><topic>Amides - pharmacology</topic><topic>Animals</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Axons - drug effects</topic><topic>Axons - physiology</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell adhesion molecules</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Central Nervous System - metabolism</topic><topic>Chondroitin sulfate</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Chondroitin Sulfates - metabolism</topic><topic>Contractility</topic><topic>Cortex</topic><topic>Diffusion</topic><topic>Elongation</topic><topic>Enzyme inhibitors</topic><topic>Growth cones</topic><topic>Humanities and Social Sciences</topic><topic>Kinesin</topic><topic>Mechanical stimuli</topic><topic>Mice</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Models, Biological</topic><topic>Molecular Motor Proteins - antagonists &amp; inhibitors</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>Motor task performance</topic><topic>multidisciplinary</topic><topic>Neurons - cytology</topic><topic>Proteoglycans</topic><topic>Pyridines - pharmacology</topic><topic>Repellents</topic><topic>rhoA GTP-Binding Protein - antagonists &amp; inhibitors</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA protein</topic><topic>Science</topic><topic>Semaphorin-3A - metabolism</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilinc, Devrim</creatorcontrib><creatorcontrib>Blasiak, Agata</creatorcontrib><creatorcontrib>O'Mahony, James J.</creatorcontrib><creatorcontrib>Lee, Gil U.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilinc, Devrim</au><au>Blasiak, Agata</au><au>O'Mahony, James J.</au><au>Lee, Gil U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-11-24</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>7128</spage><epage>7128</epage><pages>7128-7128</pages><artnum>7128</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g. , elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro ; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25417891</pmid><doi>10.1038/srep07128</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-11, Vol.4 (1), p.7128-7128, Article 7128
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4241520
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13/62
14/1
14/34
14/63
631/1647/2204/2209
631/1647/277
631/378/2571/2576
639/166/985
Amides - pharmacology
Animals
Axon guidance
Axons
Axons - drug effects
Axons - physiology
Cell adhesion & migration
Cell adhesion molecules
Cells, Cultured
Central nervous system
Central Nervous System - metabolism
Chondroitin sulfate
Chondroitin Sulfates - chemistry
Chondroitin Sulfates - metabolism
Contractility
Cortex
Diffusion
Elongation
Enzyme inhibitors
Growth cones
Humanities and Social Sciences
Kinesin
Mechanical stimuli
Mice
Microfluidic Analytical Techniques
Microfluidics
Models, Biological
Molecular Motor Proteins - antagonists & inhibitors
Molecular Motor Proteins - metabolism
Motor task performance
multidisciplinary
Neurons - cytology
Proteoglycans
Pyridines - pharmacology
Repellents
rhoA GTP-Binding Protein - antagonists & inhibitors
rhoA GTP-Binding Protein - metabolism
RhoA protein
Science
Semaphorin-3A - metabolism
Sulfates
title Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Piconewton%20Towing%20of%20CNS%20Axons%20against%20Diffusing%20and%20Surface-Bound%20Repellents%20Requires%20the%20Inhibition%20of%20Motor%20Protein-Associated%20Pathways&rft.jtitle=Scientific%20reports&rft.au=Kilinc,%20Devrim&rft.date=2014-11-24&rft.volume=4&rft.issue=1&rft.spage=7128&rft.epage=7128&rft.pages=7128-7128&rft.artnum=7128&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep07128&rft_dat=%3Cproquest_pubme%3E1898075940%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898075940&rft_id=info:pmid/25417891&rfr_iscdi=true