Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways
Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g. , elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro ; however, direct mechanical stimulation i...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2014-11, Vol.4 (1), p.7128-7128, Article 7128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7128 |
---|---|
container_issue | 1 |
container_start_page | 7128 |
container_title | Scientific reports |
container_volume | 4 |
creator | Kilinc, Devrim Blasiak, Agata O'Mahony, James J. Lee, Gil U. |
description | Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour,
e.g.
, elongation or turning. External force application to growth cones directs and enhances axon elongation
in vitro
; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones
via
magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar. |
doi_str_mv | 10.1038/srep07128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4241520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898075940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</originalsourceid><addsrcrecordid>eNplkVFvUyEcxW-Mxi1zD34BQ-KLmlwHXOiFF5Ou6lxStXHzmfwvF1qWFjrgWvcl_Myj6dZU5YU_Ob8cDpyqeknwe4IbcZaiWeOWUPGkOqaY8Zo2lD49mI-q05RucFmcSkbk8-qIckZaIclx9WcaNmjmdPBmk4NH12Hj_BwFiybfrtD4d_AJwRycTxl9dNYOaSuD79HVEC1oU5-HoZx-mLVZLo3PqYy3g4smobww6NIvXOeyK9bF82vIIaJZDNk4X49TCtpBNj2aQV5s4C69qJ5ZWCZz-rCfVD8_f7qefKmn3y8uJ-NprVkjcg0j1uoRbTvea6o5xqJlQCgbMaut7AynTdcK3RrMtGyE7lkH0AMFy0Fo1jYn1Yed73roVqbXJXiEpVpHt4J4pwI49bfi3ULNwy_FKCOc4mLw5sEghtvBpKxWLunyBeBNGJIiJZ0UjElW0Nf_oDdhiL48TxEhBW65ZFvDtztKx5BKp3YfhmC1LVrtiy7sq8P0e_Kx1gK82wGpSH5u4sGV_7ndA9bvtNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898075940</pqid></control><display><type>article</type><title>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Kilinc, Devrim ; Blasiak, Agata ; O'Mahony, James J. ; Lee, Gil U.</creator><creatorcontrib>Kilinc, Devrim ; Blasiak, Agata ; O'Mahony, James J. ; Lee, Gil U.</creatorcontrib><description>Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour,
e.g.
, elongation or turning. External force application to growth cones directs and enhances axon elongation
in vitro
; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones
via
magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep07128</identifier><identifier>PMID: 25417891</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 14/1 ; 14/34 ; 14/63 ; 631/1647/2204/2209 ; 631/1647/277 ; 631/378/2571/2576 ; 639/166/985 ; Amides - pharmacology ; Animals ; Axon guidance ; Axons ; Axons - drug effects ; Axons - physiology ; Cell adhesion & migration ; Cell adhesion molecules ; Cells, Cultured ; Central nervous system ; Central Nervous System - metabolism ; Chondroitin sulfate ; Chondroitin Sulfates - chemistry ; Chondroitin Sulfates - metabolism ; Contractility ; Cortex ; Diffusion ; Elongation ; Enzyme inhibitors ; Growth cones ; Humanities and Social Sciences ; Kinesin ; Mechanical stimuli ; Mice ; Microfluidic Analytical Techniques ; Microfluidics ; Models, Biological ; Molecular Motor Proteins - antagonists & inhibitors ; Molecular Motor Proteins - metabolism ; Motor task performance ; multidisciplinary ; Neurons - cytology ; Proteoglycans ; Pyridines - pharmacology ; Repellents ; rhoA GTP-Binding Protein - antagonists & inhibitors ; rhoA GTP-Binding Protein - metabolism ; RhoA protein ; Science ; Semaphorin-3A - metabolism ; Sulfates</subject><ispartof>Scientific reports, 2014-11, Vol.4 (1), p.7128-7128, Article 7128</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</citedby><cites>FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25417891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kilinc, Devrim</creatorcontrib><creatorcontrib>Blasiak, Agata</creatorcontrib><creatorcontrib>O'Mahony, James J.</creatorcontrib><creatorcontrib>Lee, Gil U.</creatorcontrib><title>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour,
e.g.
, elongation or turning. External force application to growth cones directs and enhances axon elongation
in vitro
; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones
via
magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.</description><subject>13/62</subject><subject>14/1</subject><subject>14/34</subject><subject>14/63</subject><subject>631/1647/2204/2209</subject><subject>631/1647/277</subject><subject>631/378/2571/2576</subject><subject>639/166/985</subject><subject>Amides - pharmacology</subject><subject>Animals</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Axons - drug effects</subject><subject>Axons - physiology</subject><subject>Cell adhesion & migration</subject><subject>Cell adhesion molecules</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Central Nervous System - metabolism</subject><subject>Chondroitin sulfate</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Chondroitin Sulfates - metabolism</subject><subject>Contractility</subject><subject>Cortex</subject><subject>Diffusion</subject><subject>Elongation</subject><subject>Enzyme inhibitors</subject><subject>Growth cones</subject><subject>Humanities and Social Sciences</subject><subject>Kinesin</subject><subject>Mechanical stimuli</subject><subject>Mice</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Models, Biological</subject><subject>Molecular Motor Proteins - antagonists & inhibitors</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>Motor task performance</subject><subject>multidisciplinary</subject><subject>Neurons - cytology</subject><subject>Proteoglycans</subject><subject>Pyridines - pharmacology</subject><subject>Repellents</subject><subject>rhoA GTP-Binding Protein - antagonists & inhibitors</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA protein</subject><subject>Science</subject><subject>Semaphorin-3A - metabolism</subject><subject>Sulfates</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkVFvUyEcxW-Mxi1zD34BQ-KLmlwHXOiFF5Ou6lxStXHzmfwvF1qWFjrgWvcl_Myj6dZU5YU_Ob8cDpyqeknwe4IbcZaiWeOWUPGkOqaY8Zo2lD49mI-q05RucFmcSkbk8-qIckZaIclx9WcaNmjmdPBmk4NH12Hj_BwFiybfrtD4d_AJwRycTxl9dNYOaSuD79HVEC1oU5-HoZx-mLVZLo3PqYy3g4smobww6NIvXOeyK9bF82vIIaJZDNk4X49TCtpBNj2aQV5s4C69qJ5ZWCZz-rCfVD8_f7qefKmn3y8uJ-NprVkjcg0j1uoRbTvea6o5xqJlQCgbMaut7AynTdcK3RrMtGyE7lkH0AMFy0Fo1jYn1Yed73roVqbXJXiEpVpHt4J4pwI49bfi3ULNwy_FKCOc4mLw5sEghtvBpKxWLunyBeBNGJIiJZ0UjElW0Nf_oDdhiL48TxEhBW65ZFvDtztKx5BKp3YfhmC1LVrtiy7sq8P0e_Kx1gK82wGpSH5u4sGV_7ndA9bvtNw</recordid><startdate>20141124</startdate><enddate>20141124</enddate><creator>Kilinc, Devrim</creator><creator>Blasiak, Agata</creator><creator>O'Mahony, James J.</creator><creator>Lee, Gil U.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141124</creationdate><title>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</title><author>Kilinc, Devrim ; Blasiak, Agata ; O'Mahony, James J. ; Lee, Gil U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a647c627b5dc2c500874a12464fcf9be523b78c7e04c938cd4baada2af5a8c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/62</topic><topic>14/1</topic><topic>14/34</topic><topic>14/63</topic><topic>631/1647/2204/2209</topic><topic>631/1647/277</topic><topic>631/378/2571/2576</topic><topic>639/166/985</topic><topic>Amides - pharmacology</topic><topic>Animals</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Axons - drug effects</topic><topic>Axons - physiology</topic><topic>Cell adhesion & migration</topic><topic>Cell adhesion molecules</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Central Nervous System - metabolism</topic><topic>Chondroitin sulfate</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Chondroitin Sulfates - metabolism</topic><topic>Contractility</topic><topic>Cortex</topic><topic>Diffusion</topic><topic>Elongation</topic><topic>Enzyme inhibitors</topic><topic>Growth cones</topic><topic>Humanities and Social Sciences</topic><topic>Kinesin</topic><topic>Mechanical stimuli</topic><topic>Mice</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Models, Biological</topic><topic>Molecular Motor Proteins - antagonists & inhibitors</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>Motor task performance</topic><topic>multidisciplinary</topic><topic>Neurons - cytology</topic><topic>Proteoglycans</topic><topic>Pyridines - pharmacology</topic><topic>Repellents</topic><topic>rhoA GTP-Binding Protein - antagonists & inhibitors</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA protein</topic><topic>Science</topic><topic>Semaphorin-3A - metabolism</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilinc, Devrim</creatorcontrib><creatorcontrib>Blasiak, Agata</creatorcontrib><creatorcontrib>O'Mahony, James J.</creatorcontrib><creatorcontrib>Lee, Gil U.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilinc, Devrim</au><au>Blasiak, Agata</au><au>O'Mahony, James J.</au><au>Lee, Gil U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-11-24</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>7128</spage><epage>7128</epage><pages>7128-7128</pages><artnum>7128</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour,
e.g.
, elongation or turning. External force application to growth cones directs and enhances axon elongation
in vitro
; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones
via
magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25417891</pmid><doi>10.1038/srep07128</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2014-11, Vol.4 (1), p.7128-7128, Article 7128 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4241520 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13/62 14/1 14/34 14/63 631/1647/2204/2209 631/1647/277 631/378/2571/2576 639/166/985 Amides - pharmacology Animals Axon guidance Axons Axons - drug effects Axons - physiology Cell adhesion & migration Cell adhesion molecules Cells, Cultured Central nervous system Central Nervous System - metabolism Chondroitin sulfate Chondroitin Sulfates - chemistry Chondroitin Sulfates - metabolism Contractility Cortex Diffusion Elongation Enzyme inhibitors Growth cones Humanities and Social Sciences Kinesin Mechanical stimuli Mice Microfluidic Analytical Techniques Microfluidics Models, Biological Molecular Motor Proteins - antagonists & inhibitors Molecular Motor Proteins - metabolism Motor task performance multidisciplinary Neurons - cytology Proteoglycans Pyridines - pharmacology Repellents rhoA GTP-Binding Protein - antagonists & inhibitors rhoA GTP-Binding Protein - metabolism RhoA protein Science Semaphorin-3A - metabolism Sulfates |
title | Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Piconewton%20Towing%20of%20CNS%20Axons%20against%20Diffusing%20and%20Surface-Bound%20Repellents%20Requires%20the%20Inhibition%20of%20Motor%20Protein-Associated%20Pathways&rft.jtitle=Scientific%20reports&rft.au=Kilinc,%20Devrim&rft.date=2014-11-24&rft.volume=4&rft.issue=1&rft.spage=7128&rft.epage=7128&rft.pages=7128-7128&rft.artnum=7128&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep07128&rft_dat=%3Cproquest_pubme%3E1898075940%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898075940&rft_id=info:pmid/25417891&rfr_iscdi=true |