Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration

Morphological and ploidy changes of the arsenic hyperaccumulator, Chinese brake fern (Pteris vittata) callus tissue are described here to provide insight into fern life cycle biology and for possible biotechnology applications. Pteris vittata callus was studied using transmission and scanning electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC biotechnology 2014-11, Vol.14 (1), p.96-96, Article 96
Hauptverfasser: Joyce, Blake L, Eda, Shigetoshi, Dunlap, John, Stewart, Jr, C Neal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 96
container_title BMC biotechnology
container_volume 14
creator Joyce, Blake L
Eda, Shigetoshi
Dunlap, John
Stewart, Jr, C Neal
description Morphological and ploidy changes of the arsenic hyperaccumulator, Chinese brake fern (Pteris vittata) callus tissue are described here to provide insight into fern life cycle biology and for possible biotechnology applications. Pteris vittata callus was studied using transmission and scanning electron microscopy, and flow cytometry. Callus induction occurred both in light and dark culture conditions from prothallus tissues, whereas rhizoid formation occurred only in dark culture conditions. Callus tissues contained two types of cells: one actively dividing and the other containing a single large vacuole undergoing exocytosis. Sporophytes regenerated from callus asynchronously form clusters of cells in a manner apparently analogous to direct organogenesis. Extracellular matrices were observed in actively-growing callus and at the base of regenerating sporophytes. Callus tissue nuclei were found to be primarily diploid at induction and throughout maintenance of cultures indicating that callus cell fate is determined at induction, which closely follows apogamous sporophyte development. Presence of a dense extracellular matrix in conjunction with sporophyte development suggests a link between the suspensor-like activity of the embryonic foot during normal fern embryo development and the suspected functions of extracellular matrices in angiosperms. Further investigation could lead to a better understanding of genes involved in P. vittata embryo development and apogamous sporophyte development. The methodology could be useful for in vitro propagation of rare and valuable fern germplasm.
doi_str_mv 10.1186/s12896-014-0096-6
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4241211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539593228</galeid><sourcerecordid>A539593228</sourcerecordid><originalsourceid>FETCH-LOGICAL-b793t-1a4385e3bc2ec37efe73d5f7c3ea85cc3e259531acace8f6355df06418cd12213</originalsourceid><addsrcrecordid>eNqNk1trHCEUx4fS0lzaD9CXMtCX5mFS7868FEJ6W5qS0NuruM6ZicHRrc4s3W9fN5su2ZLConDU8zt_1L8WxQuMTjGuxZuESd2ICmFWIZQH4lFxiJkklZAcPb43PiiOUrpBCMsaiafFAeEMMczEYdF-CXFxHVzoV6X2bblwwbar0sESXNnCCHGwXo82-DJ05VWe21Qu7TjqUZdGOzelsp2i9X1pfTuZW3ItFKEHD_G29FnxpNMuwfO7eFz8-PD--_mn6uLy4-z87KKay4aOFdaM1hzo3BAwVEIHkra8k4aCrrnJgfCGU6yNNlB3gnLedkgwXJsWE4LpcfF2o7uY5gO0BvwYtVOLaAcdVypoq3Yz3l6rPiwVIwwTvBZ4txGY2_Afgd2MCYPauKCyC2rtghJZ5vXdPmL4NUEa1WCTAee0hzAlhYWUVHIsmj1QRgitKcd7oJQjIhmnGX31D3oTpujz3WeKiKZBNPct1WsHyvou5DOZtag647ThDSWkztTpA1RuLQzWBA-dzes7BSc7BZkZ4ffY6ykl9flqtjc7-_Z1f_by5y6LN6yJIaUI3dZDjNT67zzo2sv7r2db8fez0D8Y8hKU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626990390</pqid></control><display><type>article</type><title>Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Joyce, Blake L ; Eda, Shigetoshi ; Dunlap, John ; Stewart, Jr, C Neal</creator><creatorcontrib>Joyce, Blake L ; Eda, Shigetoshi ; Dunlap, John ; Stewart, Jr, C Neal</creatorcontrib><description>Morphological and ploidy changes of the arsenic hyperaccumulator, Chinese brake fern (Pteris vittata) callus tissue are described here to provide insight into fern life cycle biology and for possible biotechnology applications. Pteris vittata callus was studied using transmission and scanning electron microscopy, and flow cytometry. Callus induction occurred both in light and dark culture conditions from prothallus tissues, whereas rhizoid formation occurred only in dark culture conditions. Callus tissues contained two types of cells: one actively dividing and the other containing a single large vacuole undergoing exocytosis. Sporophytes regenerated from callus asynchronously form clusters of cells in a manner apparently analogous to direct organogenesis. Extracellular matrices were observed in actively-growing callus and at the base of regenerating sporophytes. Callus tissue nuclei were found to be primarily diploid at induction and throughout maintenance of cultures indicating that callus cell fate is determined at induction, which closely follows apogamous sporophyte development. Presence of a dense extracellular matrix in conjunction with sporophyte development suggests a link between the suspensor-like activity of the embryonic foot during normal fern embryo development and the suspected functions of extracellular matrices in angiosperms. Further investigation could lead to a better understanding of genes involved in P. vittata embryo development and apogamous sporophyte development. The methodology could be useful for in vitro propagation of rare and valuable fern germplasm.</description><identifier>ISSN: 1472-6750</identifier><identifier>EISSN: 1472-6750</identifier><identifier>DOI: 10.1186/s12896-014-0096-6</identifier><identifier>PMID: 25404146</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Angiosperms ; Arsenic - metabolism ; Biotechnology ; Bulk molding compounds ; Cell Culture Techniques ; Culture ; Embryos ; Experiments ; Ferns ; Flow cytometry ; Genomics ; Histology ; Morphology ; Nuclei ; Physiology ; Ploidies ; Pteris - genetics ; Pteris - growth &amp; development ; Pteris - physiology ; Pteris vittata ; Regeneration ; Scanning electron microscopy ; Studies</subject><ispartof>BMC biotechnology, 2014-11, Vol.14 (1), p.96-96, Article 96</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Joyce et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Joyce et al.; licensee BioMed Central Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b793t-1a4385e3bc2ec37efe73d5f7c3ea85cc3e259531acace8f6355df06418cd12213</citedby><cites>FETCH-LOGICAL-b793t-1a4385e3bc2ec37efe73d5f7c3ea85cc3e259531acace8f6355df06418cd12213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241211/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241211/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25404146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joyce, Blake L</creatorcontrib><creatorcontrib>Eda, Shigetoshi</creatorcontrib><creatorcontrib>Dunlap, John</creatorcontrib><creatorcontrib>Stewart, Jr, C Neal</creatorcontrib><title>Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration</title><title>BMC biotechnology</title><addtitle>BMC Biotechnol</addtitle><description>Morphological and ploidy changes of the arsenic hyperaccumulator, Chinese brake fern (Pteris vittata) callus tissue are described here to provide insight into fern life cycle biology and for possible biotechnology applications. Pteris vittata callus was studied using transmission and scanning electron microscopy, and flow cytometry. Callus induction occurred both in light and dark culture conditions from prothallus tissues, whereas rhizoid formation occurred only in dark culture conditions. Callus tissues contained two types of cells: one actively dividing and the other containing a single large vacuole undergoing exocytosis. Sporophytes regenerated from callus asynchronously form clusters of cells in a manner apparently analogous to direct organogenesis. Extracellular matrices were observed in actively-growing callus and at the base of regenerating sporophytes. Callus tissue nuclei were found to be primarily diploid at induction and throughout maintenance of cultures indicating that callus cell fate is determined at induction, which closely follows apogamous sporophyte development. Presence of a dense extracellular matrix in conjunction with sporophyte development suggests a link between the suspensor-like activity of the embryonic foot during normal fern embryo development and the suspected functions of extracellular matrices in angiosperms. Further investigation could lead to a better understanding of genes involved in P. vittata embryo development and apogamous sporophyte development. The methodology could be useful for in vitro propagation of rare and valuable fern germplasm.</description><subject>Angiosperms</subject><subject>Arsenic - metabolism</subject><subject>Biotechnology</subject><subject>Bulk molding compounds</subject><subject>Cell Culture Techniques</subject><subject>Culture</subject><subject>Embryos</subject><subject>Experiments</subject><subject>Ferns</subject><subject>Flow cytometry</subject><subject>Genomics</subject><subject>Histology</subject><subject>Morphology</subject><subject>Nuclei</subject><subject>Physiology</subject><subject>Ploidies</subject><subject>Pteris - genetics</subject><subject>Pteris - growth &amp; development</subject><subject>Pteris - physiology</subject><subject>Pteris vittata</subject><subject>Regeneration</subject><subject>Scanning electron microscopy</subject><subject>Studies</subject><issn>1472-6750</issn><issn>1472-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>KPI</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNk1trHCEUx4fS0lzaD9CXMtCX5mFS7868FEJ6W5qS0NuruM6ZicHRrc4s3W9fN5su2ZLConDU8zt_1L8WxQuMTjGuxZuESd2ICmFWIZQH4lFxiJkklZAcPb43PiiOUrpBCMsaiafFAeEMMczEYdF-CXFxHVzoV6X2bblwwbar0sESXNnCCHGwXo82-DJ05VWe21Qu7TjqUZdGOzelsp2i9X1pfTuZW3ItFKEHD_G29FnxpNMuwfO7eFz8-PD--_mn6uLy4-z87KKay4aOFdaM1hzo3BAwVEIHkra8k4aCrrnJgfCGU6yNNlB3gnLedkgwXJsWE4LpcfF2o7uY5gO0BvwYtVOLaAcdVypoq3Yz3l6rPiwVIwwTvBZ4txGY2_Afgd2MCYPauKCyC2rtghJZ5vXdPmL4NUEa1WCTAee0hzAlhYWUVHIsmj1QRgitKcd7oJQjIhmnGX31D3oTpujz3WeKiKZBNPct1WsHyvou5DOZtag647ThDSWkztTpA1RuLQzWBA-dzes7BSc7BZkZ4ffY6ykl9flqtjc7-_Z1f_by5y6LN6yJIaUI3dZDjNT67zzo2sv7r2db8fez0D8Y8hKU</recordid><startdate>20141118</startdate><enddate>20141118</enddate><creator>Joyce, Blake L</creator><creator>Eda, Shigetoshi</creator><creator>Dunlap, John</creator><creator>Stewart, Jr, C Neal</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>KPI</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141118</creationdate><title>Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration</title><author>Joyce, Blake L ; Eda, Shigetoshi ; Dunlap, John ; Stewart, Jr, C Neal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b793t-1a4385e3bc2ec37efe73d5f7c3ea85cc3e259531acace8f6355df06418cd12213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angiosperms</topic><topic>Arsenic - metabolism</topic><topic>Biotechnology</topic><topic>Bulk molding compounds</topic><topic>Cell Culture Techniques</topic><topic>Culture</topic><topic>Embryos</topic><topic>Experiments</topic><topic>Ferns</topic><topic>Flow cytometry</topic><topic>Genomics</topic><topic>Histology</topic><topic>Morphology</topic><topic>Nuclei</topic><topic>Physiology</topic><topic>Ploidies</topic><topic>Pteris - genetics</topic><topic>Pteris - growth &amp; development</topic><topic>Pteris - physiology</topic><topic>Pteris vittata</topic><topic>Regeneration</topic><topic>Scanning electron microscopy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joyce, Blake L</creatorcontrib><creatorcontrib>Eda, Shigetoshi</creatorcontrib><creatorcontrib>Dunlap, John</creatorcontrib><creatorcontrib>Stewart, Jr, C Neal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>Gale In Context: Global Issues</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joyce, Blake L</au><au>Eda, Shigetoshi</au><au>Dunlap, John</au><au>Stewart, Jr, C Neal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration</atitle><jtitle>BMC biotechnology</jtitle><addtitle>BMC Biotechnol</addtitle><date>2014-11-18</date><risdate>2014</risdate><volume>14</volume><issue>1</issue><spage>96</spage><epage>96</epage><pages>96-96</pages><artnum>96</artnum><issn>1472-6750</issn><eissn>1472-6750</eissn><abstract>Morphological and ploidy changes of the arsenic hyperaccumulator, Chinese brake fern (Pteris vittata) callus tissue are described here to provide insight into fern life cycle biology and for possible biotechnology applications. Pteris vittata callus was studied using transmission and scanning electron microscopy, and flow cytometry. Callus induction occurred both in light and dark culture conditions from prothallus tissues, whereas rhizoid formation occurred only in dark culture conditions. Callus tissues contained two types of cells: one actively dividing and the other containing a single large vacuole undergoing exocytosis. Sporophytes regenerated from callus asynchronously form clusters of cells in a manner apparently analogous to direct organogenesis. Extracellular matrices were observed in actively-growing callus and at the base of regenerating sporophytes. Callus tissue nuclei were found to be primarily diploid at induction and throughout maintenance of cultures indicating that callus cell fate is determined at induction, which closely follows apogamous sporophyte development. Presence of a dense extracellular matrix in conjunction with sporophyte development suggests a link between the suspensor-like activity of the embryonic foot during normal fern embryo development and the suspected functions of extracellular matrices in angiosperms. Further investigation could lead to a better understanding of genes involved in P. vittata embryo development and apogamous sporophyte development. The methodology could be useful for in vitro propagation of rare and valuable fern germplasm.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25404146</pmid><doi>10.1186/s12896-014-0096-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1472-6750
ispartof BMC biotechnology, 2014-11, Vol.14 (1), p.96-96, Article 96
issn 1472-6750
1472-6750
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4241211
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Angiosperms
Arsenic - metabolism
Biotechnology
Bulk molding compounds
Cell Culture Techniques
Culture
Embryos
Experiments
Ferns
Flow cytometry
Genomics
Histology
Morphology
Nuclei
Physiology
Ploidies
Pteris - genetics
Pteris - growth & development
Pteris - physiology
Pteris vittata
Regeneration
Scanning electron microscopy
Studies
title Morphology and ploidy level determination of Pteris vittata callus during induction and regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20and%20ploidy%20level%20determination%20of%20Pteris%20vittata%20callus%20during%20induction%20and%20regeneration&rft.jtitle=BMC%20biotechnology&rft.au=Joyce,%20Blake%20L&rft.date=2014-11-18&rft.volume=14&rft.issue=1&rft.spage=96&rft.epage=96&rft.pages=96-96&rft.artnum=96&rft.issn=1472-6750&rft.eissn=1472-6750&rft_id=info:doi/10.1186/s12896-014-0096-6&rft_dat=%3Cgale_pubme%3EA539593228%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626990390&rft_id=info:pmid/25404146&rft_galeid=A539593228&rfr_iscdi=true