Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine Ameliorates Atherosclerosis Through Suppressing Macrophage Inflammation
Inflammation marks all stages of atherogenesis. DNA hypermethylation in the whole genome or specific genes is associated with inflammation and cardiovascular diseases. Therefore, we aimed to study whether inhibiting DNA methylation by DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC)...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2014-12, Vol.155 (12), p.4925-4938 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4938 |
---|---|
container_issue | 12 |
container_start_page | 4925 |
container_title | Endocrinology (Philadelphia) |
container_volume | 155 |
creator | Cao, Qiang Wang, Xianfeng Jia, Lin Mondal, Ashis K Diallo, Abdoulaye Hawkins, Gregory A Das, Swapan K Parks, John S Yu, Liqing Shi, Huidong Shi, Hang Xue, Bingzhong |
description | Inflammation marks all stages of atherogenesis. DNA hypermethylation in the whole genome or specific genes is associated with inflammation and cardiovascular diseases. Therefore, we aimed to study whether inhibiting DNA methylation by DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) ameliorates atherosclerosis in low-density lipoprotein receptor knockout (Ldlr−/−) mice. Ldlr−/− mice were fed an atherogenic diet and adminisered saline or 5-aza-dC (0.25 mg/kg) for up to 30 weeks. 5-aza-dC treatment markedly decreased atherosclerosis development in Ldlr−/− mice without changes in body weight, plasma lipid profile, macrophage cholesterol levels and plaque lipid content. Instead, this effect was associated with decreased macrophage inflammation. Macrophages with 5-aza-dC treatment had downregulated expression of genes involved in inflammation (TNF-α, IL-6, IL-1β, and inducible nitric oxidase) and chemotaxis (CD62/L-selectin, chemokine [C-C motif] ligand 2/MCP-1 [CCL2/MCP-1], CCL5, CCL9, and CCL2 receptor CCR2). This resulted in attenuated macrophage migration and adhesion to endothelial cells and reduced macrophage infiltration into atherosclerotic plaques. 5-aza-dC also suppressed macrophage endoplasmic reticulum stress, a key upstream signal that activates macrophage inflammation and apoptotic pathways. Finally, 5-aza-dC demethylated liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ1 (PPARγ1) promoters, which are both enriched with CpG sites. This led to overexpression of LXRα and PPARγ, which may be responsible for 5-aza-dC's anti-inflammatory and atheroprotective effect. Our findings provide strong evidence that DNA methylation may play a significant role in cardiovascular diseases and serve as a therapeutic target for prevention and treatment of atherosclerosis. |
doi_str_mv | 10.1210/en.2014-1595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4239421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2014-1595</oup_id><sourcerecordid>3130626084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-588abeab675346a1cf9bab6f9e5000c1e17d1a022493c65ad5f6709b384eead23</originalsourceid><addsrcrecordid>eNp1kc1u1DAYRS0EokNhxxpZYsEGF__mZ4MUlQIjtbCgrC0n-TJxldjBThDpAvFMPBJPQtIZCkiwsWX56HzXvgg9ZvSEcUZfgDvhlEnCVK7uoA3LpSIpS-ldtKGUCZJynh6hBzFeLUcppbiPjrjiiqks3aCvW9fa0o7W7fCrdwW-gLGdOzNa73A5Y0WKa0P4j2_fSQ3-y1zNo62tA1z00FkfzAgRF2MLwceqW1cb8WUb_LRr8YdpGALEuLovTBX80Jod4K1rOtP3NzMeonuN6SI8OuzH6OPrs8vTt-T8_ZvtaXFOKqXkSFSWmRJMmaRKyMSwqsnL5dTkoCilFQOW1sxQzmUuqkSZWjVJSvNSZBLA1Fwco5d77zCVPdQVuDGYTg_B9ibM2hur_75xttU7_1lLLnLJ2SJ4ehAE_2mCOOorPwW3ZNaCCZrwhGZyoZ7vqeWxMQZobicwqte2NDi9tqXXthb8yZ-pbuFf9SzAsz3gp-F_KnJQiT0JrvZVWCq6-frfKf8Z4Cd8-bFL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130626084</pqid></control><display><type>article</type><title>Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine Ameliorates Atherosclerosis Through Suppressing Macrophage Inflammation</title><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Journals@Ovid Complete</source><creator>Cao, Qiang ; Wang, Xianfeng ; Jia, Lin ; Mondal, Ashis K ; Diallo, Abdoulaye ; Hawkins, Gregory A ; Das, Swapan K ; Parks, John S ; Yu, Liqing ; Shi, Huidong ; Shi, Hang ; Xue, Bingzhong</creator><creatorcontrib>Cao, Qiang ; Wang, Xianfeng ; Jia, Lin ; Mondal, Ashis K ; Diallo, Abdoulaye ; Hawkins, Gregory A ; Das, Swapan K ; Parks, John S ; Yu, Liqing ; Shi, Huidong ; Shi, Hang ; Xue, Bingzhong</creatorcontrib><description>Inflammation marks all stages of atherogenesis. DNA hypermethylation in the whole genome or specific genes is associated with inflammation and cardiovascular diseases. Therefore, we aimed to study whether inhibiting DNA methylation by DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) ameliorates atherosclerosis in low-density lipoprotein receptor knockout (Ldlr−/−) mice. Ldlr−/− mice were fed an atherogenic diet and adminisered saline or 5-aza-dC (0.25 mg/kg) for up to 30 weeks. 5-aza-dC treatment markedly decreased atherosclerosis development in Ldlr−/− mice without changes in body weight, plasma lipid profile, macrophage cholesterol levels and plaque lipid content. Instead, this effect was associated with decreased macrophage inflammation. Macrophages with 5-aza-dC treatment had downregulated expression of genes involved in inflammation (TNF-α, IL-6, IL-1β, and inducible nitric oxidase) and chemotaxis (CD62/L-selectin, chemokine [C-C motif] ligand 2/MCP-1 [CCL2/MCP-1], CCL5, CCL9, and CCL2 receptor CCR2). This resulted in attenuated macrophage migration and adhesion to endothelial cells and reduced macrophage infiltration into atherosclerotic plaques. 5-aza-dC also suppressed macrophage endoplasmic reticulum stress, a key upstream signal that activates macrophage inflammation and apoptotic pathways. Finally, 5-aza-dC demethylated liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ1 (PPARγ1) promoters, which are both enriched with CpG sites. This led to overexpression of LXRα and PPARγ, which may be responsible for 5-aza-dC's anti-inflammatory and atheroprotective effect. Our findings provide strong evidence that DNA methylation may play a significant role in cardiovascular diseases and serve as a therapeutic target for prevention and treatment of atherosclerosis.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2014-1595</identifier><identifier>PMID: 25251587</identifier><language>eng</language><publisher>United States: Endocrine Society</publisher><subject>Animals ; Apoptosis ; Arteriosclerosis ; Atherogenesis ; Atherogenic diet ; Atherosclerosis ; Atherosclerosis - blood ; Atherosclerosis - etiology ; Atherosclerosis - pathology ; Azacitidine - analogs & derivatives ; Azacytidine ; Body weight ; Cardiovascular diseases ; Cell Adhesion ; Cell Movement ; Cells, Cultured ; Chemokines ; Chemotaxis ; Cholesterol ; CpG islands ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; DNA methyltransferase ; Down-regulation ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Endothelial cells ; Gene expression ; Genes ; Inflammation ; L-selectin ; Leukocyte migration ; Lipids ; Lipids - blood ; Liver X Receptors ; Low density lipoprotein receptors ; Macrophages ; Macrophages - physiology ; Male ; Mice ; Mice, Knockout ; Monocyte chemoattractant protein 1 ; Orphan Nuclear Receptors - genetics ; Plaque, Atherosclerotic - pathology ; PPAR gamma - genetics ; Promoter Regions, Genetic ; Random Allocation ; Rats ; Receptor density ; Receptors ; Renal-Cardiac-Vascular ; Therapeutic targets ; Tumor necrosis factor-α</subject><ispartof>Endocrinology (Philadelphia), 2014-12, Vol.155 (12), p.4925-4938</ispartof><rights>Copyright © 2014 by the Endocrine Society</rights><rights>Copyright © 2014 by the Endocrine Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-588abeab675346a1cf9bab6f9e5000c1e17d1a022493c65ad5f6709b384eead23</citedby><cites>FETCH-LOGICAL-c554t-588abeab675346a1cf9bab6f9e5000c1e17d1a022493c65ad5f6709b384eead23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25251587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Qiang</creatorcontrib><creatorcontrib>Wang, Xianfeng</creatorcontrib><creatorcontrib>Jia, Lin</creatorcontrib><creatorcontrib>Mondal, Ashis K</creatorcontrib><creatorcontrib>Diallo, Abdoulaye</creatorcontrib><creatorcontrib>Hawkins, Gregory A</creatorcontrib><creatorcontrib>Das, Swapan K</creatorcontrib><creatorcontrib>Parks, John S</creatorcontrib><creatorcontrib>Yu, Liqing</creatorcontrib><creatorcontrib>Shi, Huidong</creatorcontrib><creatorcontrib>Shi, Hang</creatorcontrib><creatorcontrib>Xue, Bingzhong</creatorcontrib><title>Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine Ameliorates Atherosclerosis Through Suppressing Macrophage Inflammation</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Inflammation marks all stages of atherogenesis. DNA hypermethylation in the whole genome or specific genes is associated with inflammation and cardiovascular diseases. Therefore, we aimed to study whether inhibiting DNA methylation by DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) ameliorates atherosclerosis in low-density lipoprotein receptor knockout (Ldlr−/−) mice. Ldlr−/− mice were fed an atherogenic diet and adminisered saline or 5-aza-dC (0.25 mg/kg) for up to 30 weeks. 5-aza-dC treatment markedly decreased atherosclerosis development in Ldlr−/− mice without changes in body weight, plasma lipid profile, macrophage cholesterol levels and plaque lipid content. Instead, this effect was associated with decreased macrophage inflammation. Macrophages with 5-aza-dC treatment had downregulated expression of genes involved in inflammation (TNF-α, IL-6, IL-1β, and inducible nitric oxidase) and chemotaxis (CD62/L-selectin, chemokine [C-C motif] ligand 2/MCP-1 [CCL2/MCP-1], CCL5, CCL9, and CCL2 receptor CCR2). This resulted in attenuated macrophage migration and adhesion to endothelial cells and reduced macrophage infiltration into atherosclerotic plaques. 5-aza-dC also suppressed macrophage endoplasmic reticulum stress, a key upstream signal that activates macrophage inflammation and apoptotic pathways. Finally, 5-aza-dC demethylated liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ1 (PPARγ1) promoters, which are both enriched with CpG sites. This led to overexpression of LXRα and PPARγ, which may be responsible for 5-aza-dC's anti-inflammatory and atheroprotective effect. Our findings provide strong evidence that DNA methylation may play a significant role in cardiovascular diseases and serve as a therapeutic target for prevention and treatment of atherosclerosis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Arteriosclerosis</subject><subject>Atherogenesis</subject><subject>Atherogenic diet</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - blood</subject><subject>Atherosclerosis - etiology</subject><subject>Atherosclerosis - pathology</subject><subject>Azacitidine - analogs & derivatives</subject><subject>Azacytidine</subject><subject>Body weight</subject><subject>Cardiovascular diseases</subject><subject>Cell Adhesion</subject><subject>Cell Movement</subject><subject>Cells, Cultured</subject><subject>Chemokines</subject><subject>Chemotaxis</subject><subject>Cholesterol</subject><subject>CpG islands</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>DNA methyltransferase</subject><subject>Down-regulation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Endothelial cells</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Inflammation</subject><subject>L-selectin</subject><subject>Leukocyte migration</subject><subject>Lipids</subject><subject>Lipids - blood</subject><subject>Liver X Receptors</subject><subject>Low density lipoprotein receptors</subject><subject>Macrophages</subject><subject>Macrophages - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Orphan Nuclear Receptors - genetics</subject><subject>Plaque, Atherosclerotic - pathology</subject><subject>PPAR gamma - genetics</subject><subject>Promoter Regions, Genetic</subject><subject>Random Allocation</subject><subject>Rats</subject><subject>Receptor density</subject><subject>Receptors</subject><subject>Renal-Cardiac-Vascular</subject><subject>Therapeutic targets</subject><subject>Tumor necrosis factor-α</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAYRS0EokNhxxpZYsEGF__mZ4MUlQIjtbCgrC0n-TJxldjBThDpAvFMPBJPQtIZCkiwsWX56HzXvgg9ZvSEcUZfgDvhlEnCVK7uoA3LpSIpS-ldtKGUCZJynh6hBzFeLUcppbiPjrjiiqks3aCvW9fa0o7W7fCrdwW-gLGdOzNa73A5Y0WKa0P4j2_fSQ3-y1zNo62tA1z00FkfzAgRF2MLwceqW1cb8WUb_LRr8YdpGALEuLovTBX80Jod4K1rOtP3NzMeonuN6SI8OuzH6OPrs8vTt-T8_ZvtaXFOKqXkSFSWmRJMmaRKyMSwqsnL5dTkoCilFQOW1sxQzmUuqkSZWjVJSvNSZBLA1Fwco5d77zCVPdQVuDGYTg_B9ibM2hur_75xttU7_1lLLnLJ2SJ4ehAE_2mCOOorPwW3ZNaCCZrwhGZyoZ7vqeWxMQZobicwqte2NDi9tqXXthb8yZ-pbuFf9SzAsz3gp-F_KnJQiT0JrvZVWCq6-frfKf8Z4Cd8-bFL</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Cao, Qiang</creator><creator>Wang, Xianfeng</creator><creator>Jia, Lin</creator><creator>Mondal, Ashis K</creator><creator>Diallo, Abdoulaye</creator><creator>Hawkins, Gregory A</creator><creator>Das, Swapan K</creator><creator>Parks, John S</creator><creator>Yu, Liqing</creator><creator>Shi, Huidong</creator><creator>Shi, Hang</creator><creator>Xue, Bingzhong</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20141201</creationdate><title>Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine Ameliorates Atherosclerosis Through Suppressing Macrophage Inflammation</title><author>Cao, Qiang ; Wang, Xianfeng ; Jia, Lin ; Mondal, Ashis K ; Diallo, Abdoulaye ; Hawkins, Gregory A ; Das, Swapan K ; Parks, John S ; Yu, Liqing ; Shi, Huidong ; Shi, Hang ; Xue, Bingzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-588abeab675346a1cf9bab6f9e5000c1e17d1a022493c65ad5f6709b384eead23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Arteriosclerosis</topic><topic>Atherogenesis</topic><topic>Atherogenic diet</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - blood</topic><topic>Atherosclerosis - etiology</topic><topic>Atherosclerosis - pathology</topic><topic>Azacitidine - analogs & derivatives</topic><topic>Azacytidine</topic><topic>Body weight</topic><topic>Cardiovascular diseases</topic><topic>Cell Adhesion</topic><topic>Cell Movement</topic><topic>Cells, Cultured</topic><topic>Chemokines</topic><topic>Chemotaxis</topic><topic>Cholesterol</topic><topic>CpG islands</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>DNA methyltransferase</topic><topic>Down-regulation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Endothelial cells</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Inflammation</topic><topic>L-selectin</topic><topic>Leukocyte migration</topic><topic>Lipids</topic><topic>Lipids - blood</topic><topic>Liver X Receptors</topic><topic>Low density lipoprotein receptors</topic><topic>Macrophages</topic><topic>Macrophages - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Orphan Nuclear Receptors - genetics</topic><topic>Plaque, Atherosclerotic - pathology</topic><topic>PPAR gamma - genetics</topic><topic>Promoter Regions, Genetic</topic><topic>Random Allocation</topic><topic>Rats</topic><topic>Receptor density</topic><topic>Receptors</topic><topic>Renal-Cardiac-Vascular</topic><topic>Therapeutic targets</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Qiang</creatorcontrib><creatorcontrib>Wang, Xianfeng</creatorcontrib><creatorcontrib>Jia, Lin</creatorcontrib><creatorcontrib>Mondal, Ashis K</creatorcontrib><creatorcontrib>Diallo, Abdoulaye</creatorcontrib><creatorcontrib>Hawkins, Gregory A</creatorcontrib><creatorcontrib>Das, Swapan K</creatorcontrib><creatorcontrib>Parks, John S</creatorcontrib><creatorcontrib>Yu, Liqing</creatorcontrib><creatorcontrib>Shi, Huidong</creatorcontrib><creatorcontrib>Shi, Hang</creatorcontrib><creatorcontrib>Xue, Bingzhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Qiang</au><au>Wang, Xianfeng</au><au>Jia, Lin</au><au>Mondal, Ashis K</au><au>Diallo, Abdoulaye</au><au>Hawkins, Gregory A</au><au>Das, Swapan K</au><au>Parks, John S</au><au>Yu, Liqing</au><au>Shi, Huidong</au><au>Shi, Hang</au><au>Xue, Bingzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine Ameliorates Atherosclerosis Through Suppressing Macrophage Inflammation</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>155</volume><issue>12</issue><spage>4925</spage><epage>4938</epage><pages>4925-4938</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><abstract>Inflammation marks all stages of atherogenesis. DNA hypermethylation in the whole genome or specific genes is associated with inflammation and cardiovascular diseases. Therefore, we aimed to study whether inhibiting DNA methylation by DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) ameliorates atherosclerosis in low-density lipoprotein receptor knockout (Ldlr−/−) mice. Ldlr−/− mice were fed an atherogenic diet and adminisered saline or 5-aza-dC (0.25 mg/kg) for up to 30 weeks. 5-aza-dC treatment markedly decreased atherosclerosis development in Ldlr−/− mice without changes in body weight, plasma lipid profile, macrophage cholesterol levels and plaque lipid content. Instead, this effect was associated with decreased macrophage inflammation. Macrophages with 5-aza-dC treatment had downregulated expression of genes involved in inflammation (TNF-α, IL-6, IL-1β, and inducible nitric oxidase) and chemotaxis (CD62/L-selectin, chemokine [C-C motif] ligand 2/MCP-1 [CCL2/MCP-1], CCL5, CCL9, and CCL2 receptor CCR2). This resulted in attenuated macrophage migration and adhesion to endothelial cells and reduced macrophage infiltration into atherosclerotic plaques. 5-aza-dC also suppressed macrophage endoplasmic reticulum stress, a key upstream signal that activates macrophage inflammation and apoptotic pathways. Finally, 5-aza-dC demethylated liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ1 (PPARγ1) promoters, which are both enriched with CpG sites. This led to overexpression of LXRα and PPARγ, which may be responsible for 5-aza-dC's anti-inflammatory and atheroprotective effect. Our findings provide strong evidence that DNA methylation may play a significant role in cardiovascular diseases and serve as a therapeutic target for prevention and treatment of atherosclerosis.</abstract><cop>United States</cop><pub>Endocrine Society</pub><pmid>25251587</pmid><doi>10.1210/en.2014-1595</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2014-12, Vol.155 (12), p.4925-4938 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4239421 |
source | MEDLINE; Oxford Academic Journals (OUP); Alma/SFX Local Collection; EZB Electronic Journals Library; Journals@Ovid Complete |
subjects | Animals Apoptosis Arteriosclerosis Atherogenesis Atherogenic diet Atherosclerosis Atherosclerosis - blood Atherosclerosis - etiology Atherosclerosis - pathology Azacitidine - analogs & derivatives Azacytidine Body weight Cardiovascular diseases Cell Adhesion Cell Movement Cells, Cultured Chemokines Chemotaxis Cholesterol CpG islands Deoxyribonucleic acid DNA DNA Methylation DNA methyltransferase Down-regulation Endoplasmic reticulum Endoplasmic Reticulum Stress Endothelial cells Gene expression Genes Inflammation L-selectin Leukocyte migration Lipids Lipids - blood Liver X Receptors Low density lipoprotein receptors Macrophages Macrophages - physiology Male Mice Mice, Knockout Monocyte chemoattractant protein 1 Orphan Nuclear Receptors - genetics Plaque, Atherosclerotic - pathology PPAR gamma - genetics Promoter Regions, Genetic Random Allocation Rats Receptor density Receptors Renal-Cardiac-Vascular Therapeutic targets Tumor necrosis factor-α |
title | Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine Ameliorates Atherosclerosis Through Suppressing Macrophage Inflammation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibiting%20DNA%20Methylation%20by%205-Aza-2%E2%80%B2-deoxycytidine%20Ameliorates%20Atherosclerosis%20Through%20Suppressing%20Macrophage%20Inflammation&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Cao,%20Qiang&rft.date=2014-12-01&rft.volume=155&rft.issue=12&rft.spage=4925&rft.epage=4938&rft.pages=4925-4938&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/en.2014-1595&rft_dat=%3Cproquest_pubme%3E3130626084%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130626084&rft_id=info:pmid/25251587&rft_oup_id=10.1210/en.2014-1595&rfr_iscdi=true |