TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends
Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3′ overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-11, Vol.5 (1), p.5467, Article 5467 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 5467 |
container_title | Nature communications |
container_volume | 5 |
creator | Wood, Ashley M. Danielsen, Jannie M. Rendtlew Lucas, Catherine A. Rice, Ellen L. Scalzo, David Shimi, Takeshi Goldman, Robert D. Smith, Erica D. Le Beau, Michelle M. Kosak, Steven T. |
description | Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3′ overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in
LMNA
that cause an autosomal dominant premature ageing disorder—Hutchinson Gilford Progeria Syndrome (HGPS)—lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.
The shortening of telomeres—a structure that protects chromosome ends—is associated with cellular aging. Here, Wood
et al.
present evidence that interaction between the telomere-binding protein TRF2 and lamin A/C facilitates the formation of interstitial t-loops and stabilizes telomeres. |
doi_str_mv | 10.1038/ncomms6467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4235626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498048121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-90b44e66d831390fbe2b6f539c7d67f52941a9149b2715a3f43431c3600b74c23</originalsourceid><addsrcrecordid>eNplkV1LHDEYhUOpqKg3_oAS6E1RVvM1yeSmIIsfBaFQFLwLmUyyG5lJbJIp1F9vdNfttn1v8obzcHLIAeAYozOMaHseTBzHzBkXH8A-QQzPsCD049a-B45yfkR1qMQtY7tgjzRUypa3--Dh7scVgTr0cNCjD_DifA59KDZpU2CJ0GnjB190sbAsLXRTMMXHoAcY00IH_6xfrzA6aJYpjjHH0UIb-nwIdpwesj1anwfg_urybn4zu_1-_W1-cTszjJEyk6hjzHLetxRTiVxnScddjWdEz4VriGRYS8xkRwRuNHWMMooN5Qh1ghlCD8DXle_T1I22NzaUpAf1lPyo028VtVd_K8Ev1SL-UozQhhNeDb6sDVL8Odlc1OizscOgg41TVpgTgUSDJK7o53_Qxzil-hlvVEMbxJGo1MmKMinmnKzbhMFIvXam_nRW4U_b8Tfoe0MVOF0BuUphYdPWm__bvQAUgqDH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625350607</pqid></control><display><type>article</type><title>TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wood, Ashley M. ; Danielsen, Jannie M. Rendtlew ; Lucas, Catherine A. ; Rice, Ellen L. ; Scalzo, David ; Shimi, Takeshi ; Goldman, Robert D. ; Smith, Erica D. ; Le Beau, Michelle M. ; Kosak, Steven T.</creator><creatorcontrib>Wood, Ashley M. ; Danielsen, Jannie M. Rendtlew ; Lucas, Catherine A. ; Rice, Ellen L. ; Scalzo, David ; Shimi, Takeshi ; Goldman, Robert D. ; Smith, Erica D. ; Le Beau, Michelle M. ; Kosak, Steven T.</creatorcontrib><description>Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3′ overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in
LMNA
that cause an autosomal dominant premature ageing disorder—Hutchinson Gilford Progeria Syndrome (HGPS)—lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.
The shortening of telomeres—a structure that protects chromosome ends—is associated with cellular aging. Here, Wood
et al.
present evidence that interaction between the telomere-binding protein TRF2 and lamin A/C facilitates the formation of interstitial t-loops and stabilizes telomeres.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6467</identifier><identifier>PMID: 25399868</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/32 ; 631/443/7 ; 631/80/103/560 ; 631/80/509 ; Aging ; Cell division ; Cellular Senescence - physiology ; Chromosomes ; Chromosomes, Human - physiology ; DNA damage ; Fibroblasts - physiology ; Genomes ; Humanities and Social Sciences ; Humans ; In Situ Hybridization, Fluorescence ; Lamin Type A - physiology ; Medical research ; multidisciplinary ; Mutation ; Progeria - etiology ; Science ; Science (multidisciplinary) ; TATA Box Binding Protein-Like Proteins - physiology ; Telomerase ; Telomere - physiology ; Yeast</subject><ispartof>Nature communications, 2014-11, Vol.5 (1), p.5467, Article 5467</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><rights>Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-90b44e66d831390fbe2b6f539c7d67f52941a9149b2715a3f43431c3600b74c23</citedby><cites>FETCH-LOGICAL-c442t-90b44e66d831390fbe2b6f539c7d67f52941a9149b2715a3f43431c3600b74c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25399868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wood, Ashley M.</creatorcontrib><creatorcontrib>Danielsen, Jannie M. Rendtlew</creatorcontrib><creatorcontrib>Lucas, Catherine A.</creatorcontrib><creatorcontrib>Rice, Ellen L.</creatorcontrib><creatorcontrib>Scalzo, David</creatorcontrib><creatorcontrib>Shimi, Takeshi</creatorcontrib><creatorcontrib>Goldman, Robert D.</creatorcontrib><creatorcontrib>Smith, Erica D.</creatorcontrib><creatorcontrib>Le Beau, Michelle M.</creatorcontrib><creatorcontrib>Kosak, Steven T.</creatorcontrib><title>TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3′ overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in
LMNA
that cause an autosomal dominant premature ageing disorder—Hutchinson Gilford Progeria Syndrome (HGPS)—lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.
The shortening of telomeres—a structure that protects chromosome ends—is associated with cellular aging. Here, Wood
et al.
present evidence that interaction between the telomere-binding protein TRF2 and lamin A/C facilitates the formation of interstitial t-loops and stabilizes telomeres.</description><subject>14</subject><subject>14/32</subject><subject>631/443/7</subject><subject>631/80/103/560</subject><subject>631/80/509</subject><subject>Aging</subject><subject>Cell division</subject><subject>Cellular Senescence - physiology</subject><subject>Chromosomes</subject><subject>Chromosomes, Human - physiology</subject><subject>DNA damage</subject><subject>Fibroblasts - physiology</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Lamin Type A - physiology</subject><subject>Medical research</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Progeria - etiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>TATA Box Binding Protein-Like Proteins - physiology</subject><subject>Telomerase</subject><subject>Telomere - physiology</subject><subject>Yeast</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LHDEYhUOpqKg3_oAS6E1RVvM1yeSmIIsfBaFQFLwLmUyyG5lJbJIp1F9vdNfttn1v8obzcHLIAeAYozOMaHseTBzHzBkXH8A-QQzPsCD049a-B45yfkR1qMQtY7tgjzRUypa3--Dh7scVgTr0cNCjD_DifA59KDZpU2CJ0GnjB190sbAsLXRTMMXHoAcY00IH_6xfrzA6aJYpjjHH0UIb-nwIdpwesj1anwfg_urybn4zu_1-_W1-cTszjJEyk6hjzHLetxRTiVxnScddjWdEz4VriGRYS8xkRwRuNHWMMooN5Qh1ghlCD8DXle_T1I22NzaUpAf1lPyo028VtVd_K8Ev1SL-UozQhhNeDb6sDVL8Odlc1OizscOgg41TVpgTgUSDJK7o53_Qxzil-hlvVEMbxJGo1MmKMinmnKzbhMFIvXam_nRW4U_b8Tfoe0MVOF0BuUphYdPWm__bvQAUgqDH</recordid><startdate>20141117</startdate><enddate>20141117</enddate><creator>Wood, Ashley M.</creator><creator>Danielsen, Jannie M. Rendtlew</creator><creator>Lucas, Catherine A.</creator><creator>Rice, Ellen L.</creator><creator>Scalzo, David</creator><creator>Shimi, Takeshi</creator><creator>Goldman, Robert D.</creator><creator>Smith, Erica D.</creator><creator>Le Beau, Michelle M.</creator><creator>Kosak, Steven T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141117</creationdate><title>TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends</title><author>Wood, Ashley M. ; Danielsen, Jannie M. Rendtlew ; Lucas, Catherine A. ; Rice, Ellen L. ; Scalzo, David ; Shimi, Takeshi ; Goldman, Robert D. ; Smith, Erica D. ; Le Beau, Michelle M. ; Kosak, Steven T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-90b44e66d831390fbe2b6f539c7d67f52941a9149b2715a3f43431c3600b74c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14</topic><topic>14/32</topic><topic>631/443/7</topic><topic>631/80/103/560</topic><topic>631/80/509</topic><topic>Aging</topic><topic>Cell division</topic><topic>Cellular Senescence - physiology</topic><topic>Chromosomes</topic><topic>Chromosomes, Human - physiology</topic><topic>DNA damage</topic><topic>Fibroblasts - physiology</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Lamin Type A - physiology</topic><topic>Medical research</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Progeria - etiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>TATA Box Binding Protein-Like Proteins - physiology</topic><topic>Telomerase</topic><topic>Telomere - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Ashley M.</creatorcontrib><creatorcontrib>Danielsen, Jannie M. Rendtlew</creatorcontrib><creatorcontrib>Lucas, Catherine A.</creatorcontrib><creatorcontrib>Rice, Ellen L.</creatorcontrib><creatorcontrib>Scalzo, David</creatorcontrib><creatorcontrib>Shimi, Takeshi</creatorcontrib><creatorcontrib>Goldman, Robert D.</creatorcontrib><creatorcontrib>Smith, Erica D.</creatorcontrib><creatorcontrib>Le Beau, Michelle M.</creatorcontrib><creatorcontrib>Kosak, Steven T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Ashley M.</au><au>Danielsen, Jannie M. Rendtlew</au><au>Lucas, Catherine A.</au><au>Rice, Ellen L.</au><au>Scalzo, David</au><au>Shimi, Takeshi</au><au>Goldman, Robert D.</au><au>Smith, Erica D.</au><au>Le Beau, Michelle M.</au><au>Kosak, Steven T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-11-17</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5467</spage><pages>5467-</pages><artnum>5467</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3′ overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in
LMNA
that cause an autosomal dominant premature ageing disorder—Hutchinson Gilford Progeria Syndrome (HGPS)—lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.
The shortening of telomeres—a structure that protects chromosome ends—is associated with cellular aging. Here, Wood
et al.
present evidence that interaction between the telomere-binding protein TRF2 and lamin A/C facilitates the formation of interstitial t-loops and stabilizes telomeres.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25399868</pmid><doi>10.1038/ncomms6467</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-11, Vol.5 (1), p.5467, Article 5467 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4235626 |
source | MEDLINE; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 14 14/32 631/443/7 631/80/103/560 631/80/509 Aging Cell division Cellular Senescence - physiology Chromosomes Chromosomes, Human - physiology DNA damage Fibroblasts - physiology Genomes Humanities and Social Sciences Humans In Situ Hybridization, Fluorescence Lamin Type A - physiology Medical research multidisciplinary Mutation Progeria - etiology Science Science (multidisciplinary) TATA Box Binding Protein-Like Proteins - physiology Telomerase Telomere - physiology Yeast |
title | TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRF2%20and%20lamin%20A/C%20interact%20to%20facilitate%20the%20functional%20organization%20of%20chromosome%20ends&rft.jtitle=Nature%20communications&rft.au=Wood,%20Ashley%20M.&rft.date=2014-11-17&rft.volume=5&rft.issue=1&rft.spage=5467&rft.pages=5467-&rft.artnum=5467&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6467&rft_dat=%3Cproquest_pubme%3E3498048121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625350607&rft_id=info:pmid/25399868&rfr_iscdi=true |