Viral quasispecies inference from 454 pyrosequencing

Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2013-12, Vol.14 (1), p.355-355, Article 355
Hauptverfasser: Poh, Wan-Ting, Xia, Eryu, Chin-Inmanu, Kwanrutai, Wong, Lai-Ping, Cheng, Anthony Youzhi, Malasit, Prida, Suriyaphol, Prapat, Teo, Yik-Ying, Ong, Rick Twee-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 1
container_start_page 355
container_title BMC bioinformatics
container_volume 14
creator Poh, Wan-Ting
Xia, Eryu
Chin-Inmanu, Kwanrutai
Wong, Lai-Ping
Cheng, Anthony Youzhi
Malasit, Prida
Suriyaphol, Prapat
Teo, Yik-Ying
Ong, Rick Twee-Hee
description Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.
doi_str_mv 10.1186/1471-2105-14-355
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534518143</galeid><sourcerecordid>A534518143</sourcerecordid><originalsourceid>FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</originalsourceid><addsrcrecordid>eNqNks9rFTEQx4MotlbvnmTBix625tcm2YtQHlULhUL9cQ1J3uQZ2d28bnal_e-dx6uPLlSQHCbMfObL5Dsh5DWjp4wZ9YFJzWrOaFMzWYumeUKOD6mnD-5H5EUpvyhl2tDmOTniUlDDjTwm8kcaXVfdzK6ksoWQoFRpiDDCEKCKY-4r2chqezfmAjczZtOweUmeRdcVeHUfT8j3T-ffVl_qy6vPF6uzy9orRafaa62j8DF4Hb1mGJ3RbXTUCxUUjdLQNdVUCaMcBRAguFayBa7AOxakOCEf97rb2fewDjBMOKzdjql3453NLtllZUg_7Sb_tpILKbVBgdVewKf8D4FlJeTe7lyzO9fwZtFUVHl3P8aY0YIy2T6VAF3nBshzQazliolWy_9AVcsZPpwj-naPblwHFj3POEHY4fasEbJhhkmB1OkjFJ419CnkAWLC_KLh_aIBmQlup42bS7EXX6-XLN2zAbdbRogHZxi1uw_2mBdvHq7k0PD3R4k_p2TJHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469214802</pqid></control><display><type>article</type><title>Viral quasispecies inference from 454 pyrosequencing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Poh, Wan-Ting ; Xia, Eryu ; Chin-Inmanu, Kwanrutai ; Wong, Lai-Ping ; Cheng, Anthony Youzhi ; Malasit, Prida ; Suriyaphol, Prapat ; Teo, Yik-Ying ; Ong, Rick Twee-Hee</creator><creatorcontrib>Poh, Wan-Ting ; Xia, Eryu ; Chin-Inmanu, Kwanrutai ; Wong, Lai-Ping ; Cheng, Anthony Youzhi ; Malasit, Prida ; Suriyaphol, Prapat ; Teo, Yik-Ying ; Ong, Rick Twee-Hee</creatorcontrib><description>Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-14-355</identifier><identifier>PMID: 24308284</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Base Sequence ; Communicable diseases ; Computational biology ; Computational Biology - methods ; Dengue - genetics ; Dengue - virology ; Dengue virus ; Dengue Virus - classification ; Dengue Virus - genetics ; Dengue viruses ; Epidemiology ; Genetic Variation ; Genome, Viral - genetics ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Methodology ; Phenotype ; Recombination, Genetic ; Sequence Alignment ; Sequence Analysis, DNA - methods ; Species Specificity</subject><ispartof>BMC bioinformatics, 2013-12, Vol.14 (1), p.355-355, Article 355</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>Copyright © 2013 Poh et al.; licensee BioMed Central Ltd. 2013 Poh et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</citedby><cites>FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24308284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poh, Wan-Ting</creatorcontrib><creatorcontrib>Xia, Eryu</creatorcontrib><creatorcontrib>Chin-Inmanu, Kwanrutai</creatorcontrib><creatorcontrib>Wong, Lai-Ping</creatorcontrib><creatorcontrib>Cheng, Anthony Youzhi</creatorcontrib><creatorcontrib>Malasit, Prida</creatorcontrib><creatorcontrib>Suriyaphol, Prapat</creatorcontrib><creatorcontrib>Teo, Yik-Ying</creatorcontrib><creatorcontrib>Ong, Rick Twee-Hee</creatorcontrib><title>Viral quasispecies inference from 454 pyrosequencing</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.</description><subject>Base Sequence</subject><subject>Communicable diseases</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Dengue - genetics</subject><subject>Dengue - virology</subject><subject>Dengue virus</subject><subject>Dengue Virus - classification</subject><subject>Dengue Virus - genetics</subject><subject>Dengue viruses</subject><subject>Epidemiology</subject><subject>Genetic Variation</subject><subject>Genome, Viral - genetics</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Methodology</subject><subject>Phenotype</subject><subject>Recombination, Genetic</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Species Specificity</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9rFTEQx4MotlbvnmTBix625tcm2YtQHlULhUL9cQ1J3uQZ2d28bnal_e-dx6uPLlSQHCbMfObL5Dsh5DWjp4wZ9YFJzWrOaFMzWYumeUKOD6mnD-5H5EUpvyhl2tDmOTniUlDDjTwm8kcaXVfdzK6ksoWQoFRpiDDCEKCKY-4r2chqezfmAjczZtOweUmeRdcVeHUfT8j3T-ffVl_qy6vPF6uzy9orRafaa62j8DF4Hb1mGJ3RbXTUCxUUjdLQNdVUCaMcBRAguFayBa7AOxakOCEf97rb2fewDjBMOKzdjql3453NLtllZUg_7Sb_tpILKbVBgdVewKf8D4FlJeTe7lyzO9fwZtFUVHl3P8aY0YIy2T6VAF3nBshzQazliolWy_9AVcsZPpwj-naPblwHFj3POEHY4fasEbJhhkmB1OkjFJ419CnkAWLC_KLh_aIBmQlup42bS7EXX6-XLN2zAbdbRogHZxi1uw_2mBdvHq7k0PD3R4k_p2TJHw</recordid><startdate>20131205</startdate><enddate>20131205</enddate><creator>Poh, Wan-Ting</creator><creator>Xia, Eryu</creator><creator>Chin-Inmanu, Kwanrutai</creator><creator>Wong, Lai-Ping</creator><creator>Cheng, Anthony Youzhi</creator><creator>Malasit, Prida</creator><creator>Suriyaphol, Prapat</creator><creator>Teo, Yik-Ying</creator><creator>Ong, Rick Twee-Hee</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131205</creationdate><title>Viral quasispecies inference from 454 pyrosequencing</title><author>Poh, Wan-Ting ; Xia, Eryu ; Chin-Inmanu, Kwanrutai ; Wong, Lai-Ping ; Cheng, Anthony Youzhi ; Malasit, Prida ; Suriyaphol, Prapat ; Teo, Yik-Ying ; Ong, Rick Twee-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Base Sequence</topic><topic>Communicable diseases</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Dengue - genetics</topic><topic>Dengue - virology</topic><topic>Dengue virus</topic><topic>Dengue Virus - classification</topic><topic>Dengue Virus - genetics</topic><topic>Dengue viruses</topic><topic>Epidemiology</topic><topic>Genetic Variation</topic><topic>Genome, Viral - genetics</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Methodology</topic><topic>Phenotype</topic><topic>Recombination, Genetic</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poh, Wan-Ting</creatorcontrib><creatorcontrib>Xia, Eryu</creatorcontrib><creatorcontrib>Chin-Inmanu, Kwanrutai</creatorcontrib><creatorcontrib>Wong, Lai-Ping</creatorcontrib><creatorcontrib>Cheng, Anthony Youzhi</creatorcontrib><creatorcontrib>Malasit, Prida</creatorcontrib><creatorcontrib>Suriyaphol, Prapat</creatorcontrib><creatorcontrib>Teo, Yik-Ying</creatorcontrib><creatorcontrib>Ong, Rick Twee-Hee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poh, Wan-Ting</au><au>Xia, Eryu</au><au>Chin-Inmanu, Kwanrutai</au><au>Wong, Lai-Ping</au><au>Cheng, Anthony Youzhi</au><au>Malasit, Prida</au><au>Suriyaphol, Prapat</au><au>Teo, Yik-Ying</au><au>Ong, Rick Twee-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viral quasispecies inference from 454 pyrosequencing</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2013-12-05</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>355</spage><epage>355</epage><pages>355-355</pages><artnum>355</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24308284</pmid><doi>10.1186/1471-2105-14-355</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2013-12, Vol.14 (1), p.355-355, Article 355
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234478
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Base Sequence
Communicable diseases
Computational biology
Computational Biology - methods
Dengue - genetics
Dengue - virology
Dengue virus
Dengue Virus - classification
Dengue Virus - genetics
Dengue viruses
Epidemiology
Genetic Variation
Genome, Viral - genetics
Genomics
High-Throughput Nucleotide Sequencing - methods
Humans
Methodology
Phenotype
Recombination, Genetic
Sequence Alignment
Sequence Analysis, DNA - methods
Species Specificity
title Viral quasispecies inference from 454 pyrosequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viral%20quasispecies%20inference%20from%20454%20pyrosequencing&rft.jtitle=BMC%20bioinformatics&rft.au=Poh,%20Wan-Ting&rft.date=2013-12-05&rft.volume=14&rft.issue=1&rft.spage=355&rft.epage=355&rft.pages=355-355&rft.artnum=355&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-14-355&rft_dat=%3Cgale_pubme%3EA534518143%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469214802&rft_id=info:pmid/24308284&rft_galeid=A534518143&rfr_iscdi=true