Viral quasispecies inference from 454 pyrosequencing
Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2013-12, Vol.14 (1), p.355-355, Article 355 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 1 |
container_start_page | 355 |
container_title | BMC bioinformatics |
container_volume | 14 |
creator | Poh, Wan-Ting Xia, Eryu Chin-Inmanu, Kwanrutai Wong, Lai-Ping Cheng, Anthony Youzhi Malasit, Prida Suriyaphol, Prapat Teo, Yik-Ying Ong, Rick Twee-Hee |
description | Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity.
Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error.
The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses. |
doi_str_mv | 10.1186/1471-2105-14-355 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534518143</galeid><sourcerecordid>A534518143</sourcerecordid><originalsourceid>FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</originalsourceid><addsrcrecordid>eNqNks9rFTEQx4MotlbvnmTBix625tcm2YtQHlULhUL9cQ1J3uQZ2d28bnal_e-dx6uPLlSQHCbMfObL5Dsh5DWjp4wZ9YFJzWrOaFMzWYumeUKOD6mnD-5H5EUpvyhl2tDmOTniUlDDjTwm8kcaXVfdzK6ksoWQoFRpiDDCEKCKY-4r2chqezfmAjczZtOweUmeRdcVeHUfT8j3T-ffVl_qy6vPF6uzy9orRafaa62j8DF4Hb1mGJ3RbXTUCxUUjdLQNdVUCaMcBRAguFayBa7AOxakOCEf97rb2fewDjBMOKzdjql3453NLtllZUg_7Sb_tpILKbVBgdVewKf8D4FlJeTe7lyzO9fwZtFUVHl3P8aY0YIy2T6VAF3nBshzQazliolWy_9AVcsZPpwj-naPblwHFj3POEHY4fasEbJhhkmB1OkjFJ419CnkAWLC_KLh_aIBmQlup42bS7EXX6-XLN2zAbdbRogHZxi1uw_2mBdvHq7k0PD3R4k_p2TJHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469214802</pqid></control><display><type>article</type><title>Viral quasispecies inference from 454 pyrosequencing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Poh, Wan-Ting ; Xia, Eryu ; Chin-Inmanu, Kwanrutai ; Wong, Lai-Ping ; Cheng, Anthony Youzhi ; Malasit, Prida ; Suriyaphol, Prapat ; Teo, Yik-Ying ; Ong, Rick Twee-Hee</creator><creatorcontrib>Poh, Wan-Ting ; Xia, Eryu ; Chin-Inmanu, Kwanrutai ; Wong, Lai-Ping ; Cheng, Anthony Youzhi ; Malasit, Prida ; Suriyaphol, Prapat ; Teo, Yik-Ying ; Ong, Rick Twee-Hee</creatorcontrib><description>Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity.
Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error.
The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-14-355</identifier><identifier>PMID: 24308284</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Base Sequence ; Communicable diseases ; Computational biology ; Computational Biology - methods ; Dengue - genetics ; Dengue - virology ; Dengue virus ; Dengue Virus - classification ; Dengue Virus - genetics ; Dengue viruses ; Epidemiology ; Genetic Variation ; Genome, Viral - genetics ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Methodology ; Phenotype ; Recombination, Genetic ; Sequence Alignment ; Sequence Analysis, DNA - methods ; Species Specificity</subject><ispartof>BMC bioinformatics, 2013-12, Vol.14 (1), p.355-355, Article 355</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>Copyright © 2013 Poh et al.; licensee BioMed Central Ltd. 2013 Poh et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</citedby><cites>FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24308284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poh, Wan-Ting</creatorcontrib><creatorcontrib>Xia, Eryu</creatorcontrib><creatorcontrib>Chin-Inmanu, Kwanrutai</creatorcontrib><creatorcontrib>Wong, Lai-Ping</creatorcontrib><creatorcontrib>Cheng, Anthony Youzhi</creatorcontrib><creatorcontrib>Malasit, Prida</creatorcontrib><creatorcontrib>Suriyaphol, Prapat</creatorcontrib><creatorcontrib>Teo, Yik-Ying</creatorcontrib><creatorcontrib>Ong, Rick Twee-Hee</creatorcontrib><title>Viral quasispecies inference from 454 pyrosequencing</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity.
Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error.
The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.</description><subject>Base Sequence</subject><subject>Communicable diseases</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Dengue - genetics</subject><subject>Dengue - virology</subject><subject>Dengue virus</subject><subject>Dengue Virus - classification</subject><subject>Dengue Virus - genetics</subject><subject>Dengue viruses</subject><subject>Epidemiology</subject><subject>Genetic Variation</subject><subject>Genome, Viral - genetics</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Methodology</subject><subject>Phenotype</subject><subject>Recombination, Genetic</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Species Specificity</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9rFTEQx4MotlbvnmTBix625tcm2YtQHlULhUL9cQ1J3uQZ2d28bnal_e-dx6uPLlSQHCbMfObL5Dsh5DWjp4wZ9YFJzWrOaFMzWYumeUKOD6mnD-5H5EUpvyhl2tDmOTniUlDDjTwm8kcaXVfdzK6ksoWQoFRpiDDCEKCKY-4r2chqezfmAjczZtOweUmeRdcVeHUfT8j3T-ffVl_qy6vPF6uzy9orRafaa62j8DF4Hb1mGJ3RbXTUCxUUjdLQNdVUCaMcBRAguFayBa7AOxakOCEf97rb2fewDjBMOKzdjql3453NLtllZUg_7Sb_tpILKbVBgdVewKf8D4FlJeTe7lyzO9fwZtFUVHl3P8aY0YIy2T6VAF3nBshzQazliolWy_9AVcsZPpwj-naPblwHFj3POEHY4fasEbJhhkmB1OkjFJ419CnkAWLC_KLh_aIBmQlup42bS7EXX6-XLN2zAbdbRogHZxi1uw_2mBdvHq7k0PD3R4k_p2TJHw</recordid><startdate>20131205</startdate><enddate>20131205</enddate><creator>Poh, Wan-Ting</creator><creator>Xia, Eryu</creator><creator>Chin-Inmanu, Kwanrutai</creator><creator>Wong, Lai-Ping</creator><creator>Cheng, Anthony Youzhi</creator><creator>Malasit, Prida</creator><creator>Suriyaphol, Prapat</creator><creator>Teo, Yik-Ying</creator><creator>Ong, Rick Twee-Hee</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131205</creationdate><title>Viral quasispecies inference from 454 pyrosequencing</title><author>Poh, Wan-Ting ; Xia, Eryu ; Chin-Inmanu, Kwanrutai ; Wong, Lai-Ping ; Cheng, Anthony Youzhi ; Malasit, Prida ; Suriyaphol, Prapat ; Teo, Yik-Ying ; Ong, Rick Twee-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b660t-b777f3bfcb7fb71fcba879fa0b36c60f480d0706386a0ee3e327649e26eba1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Base Sequence</topic><topic>Communicable diseases</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Dengue - genetics</topic><topic>Dengue - virology</topic><topic>Dengue virus</topic><topic>Dengue Virus - classification</topic><topic>Dengue Virus - genetics</topic><topic>Dengue viruses</topic><topic>Epidemiology</topic><topic>Genetic Variation</topic><topic>Genome, Viral - genetics</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Methodology</topic><topic>Phenotype</topic><topic>Recombination, Genetic</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poh, Wan-Ting</creatorcontrib><creatorcontrib>Xia, Eryu</creatorcontrib><creatorcontrib>Chin-Inmanu, Kwanrutai</creatorcontrib><creatorcontrib>Wong, Lai-Ping</creatorcontrib><creatorcontrib>Cheng, Anthony Youzhi</creatorcontrib><creatorcontrib>Malasit, Prida</creatorcontrib><creatorcontrib>Suriyaphol, Prapat</creatorcontrib><creatorcontrib>Teo, Yik-Ying</creatorcontrib><creatorcontrib>Ong, Rick Twee-Hee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poh, Wan-Ting</au><au>Xia, Eryu</au><au>Chin-Inmanu, Kwanrutai</au><au>Wong, Lai-Ping</au><au>Cheng, Anthony Youzhi</au><au>Malasit, Prida</au><au>Suriyaphol, Prapat</au><au>Teo, Yik-Ying</au><au>Ong, Rick Twee-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viral quasispecies inference from 454 pyrosequencing</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2013-12-05</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>355</spage><epage>355</epage><pages>355-355</pages><artnum>355</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity.
Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error.
The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24308284</pmid><doi>10.1186/1471-2105-14-355</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2013-12, Vol.14 (1), p.355-355, Article 355 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234478 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Base Sequence Communicable diseases Computational biology Computational Biology - methods Dengue - genetics Dengue - virology Dengue virus Dengue Virus - classification Dengue Virus - genetics Dengue viruses Epidemiology Genetic Variation Genome, Viral - genetics Genomics High-Throughput Nucleotide Sequencing - methods Humans Methodology Phenotype Recombination, Genetic Sequence Alignment Sequence Analysis, DNA - methods Species Specificity |
title | Viral quasispecies inference from 454 pyrosequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viral%20quasispecies%20inference%20from%20454%20pyrosequencing&rft.jtitle=BMC%20bioinformatics&rft.au=Poh,%20Wan-Ting&rft.date=2013-12-05&rft.volume=14&rft.issue=1&rft.spage=355&rft.epage=355&rft.pages=355-355&rft.artnum=355&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-14-355&rft_dat=%3Cgale_pubme%3EA534518143%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469214802&rft_id=info:pmid/24308284&rft_galeid=A534518143&rfr_iscdi=true |