CSN6 drives carcinogenesis by positively regulating Myc stability
Cullin-RING ubiquitin ligases (CRLs) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cu...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-11, Vol.5 (1), p.5384-5384, Article 5384 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5384 |
---|---|
container_issue | 1 |
container_start_page | 5384 |
container_title | Nature communications |
container_volume | 5 |
creator | Chen, Jian Shin, Ji-Hyun Zhao, Ruiying Phan, Liem Wang, Hua Xue, Yuwen Post, Sean M. Ho Choi, Hyun Chen, Jiun-Sheng Wang, Edward Zhou, Zhongguo Tseng, Chieh Gully, Christopher Velazquez-Torres, Guermarie Fuentes-Mattei, Enrique Yeung, Giselle Qiao, Yi Chou, Ping-Chieh Su, Chun-Hui Hsieh, Yun-Chih Hsu, Shih-Lan Ohshiro, Kazufumi Shaikenov, Tattym Wang, Huamin Yeung, Sai-Ching Jim Lee, Mong-Hong |
description | Cullin-RING ubiquitin ligases (CRLs) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signalling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated autoubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc.
Csn6
haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eμ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN–Cullin–Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.
The COP9 signalosome (CSN) is a protein complex involved in protein degradation and tumorigenesis. Here the authors show that the CSN6 subunit antagonizes the deneddylation function of CSN5 towards ubiquitin ligase Cullin-1, resulting in Fbxw7 ubiquitin ligase degradation and thereby stabilization of the Fbxw7 target Myc. |
doi_str_mv | 10.1038/ncomms6384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3495146761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-aa53858084db99188dd19c992917f04c10a7f040eac4960ec75b57a27928d3723</originalsourceid><addsrcrecordid>eNplkF1LwzAYhYMobszd-AOk4J1SzVfb5EaQ4RdMvVCvQ5pmNaNLZtIO-u_N2JwTc_MGzsN5z3sAOEXwCkHCrq1yi0XICaMHYIghRSkqMDnc-w_AOIQ5jI9wxCg9BgOcEZ6hAg7B7eTtJU8qb1Y6JEp6ZayrtdXBhKTsk6ULpo1a0yde110jW2Pr5LlXSWhlaRrT9ifgaCaboMfbOQIf93fvk8d0-vrwNLmdpopS3KZSZoRlDDJalTzmYFWFuOIcc1TMIFUIyvWEWirKc6hVkZVZIXHBMatIPGMEbja-y65c6Epp23rZiKU3C-l74aQRfxVrPkXtVoJiQhEj0eB8a-DdV6dDK-au8zZmFijHlJMC8ixSFxtKeReC17PdBgTFunHx23iEz_Yz7dCffiNwuQFClGyt_d7O_3bf3XiLpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624937095</pqid></control><display><type>article</type><title>CSN6 drives carcinogenesis by positively regulating Myc stability</title><source>Springer Nature OA Free Journals</source><creator>Chen, Jian ; Shin, Ji-Hyun ; Zhao, Ruiying ; Phan, Liem ; Wang, Hua ; Xue, Yuwen ; Post, Sean M. ; Ho Choi, Hyun ; Chen, Jiun-Sheng ; Wang, Edward ; Zhou, Zhongguo ; Tseng, Chieh ; Gully, Christopher ; Velazquez-Torres, Guermarie ; Fuentes-Mattei, Enrique ; Yeung, Giselle ; Qiao, Yi ; Chou, Ping-Chieh ; Su, Chun-Hui ; Hsieh, Yun-Chih ; Hsu, Shih-Lan ; Ohshiro, Kazufumi ; Shaikenov, Tattym ; Wang, Huamin ; Yeung, Sai-Ching Jim ; Lee, Mong-Hong</creator><creatorcontrib>Chen, Jian ; Shin, Ji-Hyun ; Zhao, Ruiying ; Phan, Liem ; Wang, Hua ; Xue, Yuwen ; Post, Sean M. ; Ho Choi, Hyun ; Chen, Jiun-Sheng ; Wang, Edward ; Zhou, Zhongguo ; Tseng, Chieh ; Gully, Christopher ; Velazquez-Torres, Guermarie ; Fuentes-Mattei, Enrique ; Yeung, Giselle ; Qiao, Yi ; Chou, Ping-Chieh ; Su, Chun-Hui ; Hsieh, Yun-Chih ; Hsu, Shih-Lan ; Ohshiro, Kazufumi ; Shaikenov, Tattym ; Wang, Huamin ; Yeung, Sai-Ching Jim ; Lee, Mong-Hong</creatorcontrib><description>Cullin-RING ubiquitin ligases (CRLs) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signalling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated autoubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc.
Csn6
haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eμ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN–Cullin–Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.
The COP9 signalosome (CSN) is a protein complex involved in protein degradation and tumorigenesis. Here the authors show that the CSN6 subunit antagonizes the deneddylation function of CSN5 towards ubiquitin ligase Cullin-1, resulting in Fbxw7 ubiquitin ligase degradation and thereby stabilization of the Fbxw7 target Myc.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6384</identifier><identifier>PMID: 25395170</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/105 ; 13/109 ; 13/31 ; 13/44 ; 13/51 ; 13/95 ; 42 ; 42/41 ; 631/337 ; 631/67 ; 631/80/86 ; 692/420/755 ; Adaptor Proteins, Signal Transducing - biosynthesis ; Adaptor Proteins, Signal Transducing - physiology ; Animals ; Cancer ; Carcinogenesis - genetics ; Cell Line, Tumor ; Cloning ; COP9 Signalosome Complex ; Gene Expression Regulation, Neoplastic - physiology ; Gene Knockdown Techniques ; Humanities and Social Sciences ; Lymphoma - metabolism ; Lymphoma - physiopathology ; Mice ; Mice, Transgenic - genetics ; multidisciplinary ; Neoplasms, Experimental - genetics ; Oncology ; Peptide Hydrolases - biosynthesis ; Peptide Hydrolases - physiology ; Proteins ; Proto-Oncogene Proteins c-myc - biosynthesis ; Proto-Oncogene Proteins c-myc - physiology ; Science ; Science (multidisciplinary) ; SKP Cullin F-Box Protein Ligases - physiology ; Transcription, Genetic - physiology ; Ubiquitination</subject><ispartof>Nature communications, 2014-11, Vol.5 (1), p.5384-5384, Article 5384</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-aa53858084db99188dd19c992917f04c10a7f040eac4960ec75b57a27928d3723</citedby><cites>FETCH-LOGICAL-c442t-aa53858084db99188dd19c992917f04c10a7f040eac4960ec75b57a27928d3723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234183/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234183/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms6384$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25395170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Shin, Ji-Hyun</creatorcontrib><creatorcontrib>Zhao, Ruiying</creatorcontrib><creatorcontrib>Phan, Liem</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Xue, Yuwen</creatorcontrib><creatorcontrib>Post, Sean M.</creatorcontrib><creatorcontrib>Ho Choi, Hyun</creatorcontrib><creatorcontrib>Chen, Jiun-Sheng</creatorcontrib><creatorcontrib>Wang, Edward</creatorcontrib><creatorcontrib>Zhou, Zhongguo</creatorcontrib><creatorcontrib>Tseng, Chieh</creatorcontrib><creatorcontrib>Gully, Christopher</creatorcontrib><creatorcontrib>Velazquez-Torres, Guermarie</creatorcontrib><creatorcontrib>Fuentes-Mattei, Enrique</creatorcontrib><creatorcontrib>Yeung, Giselle</creatorcontrib><creatorcontrib>Qiao, Yi</creatorcontrib><creatorcontrib>Chou, Ping-Chieh</creatorcontrib><creatorcontrib>Su, Chun-Hui</creatorcontrib><creatorcontrib>Hsieh, Yun-Chih</creatorcontrib><creatorcontrib>Hsu, Shih-Lan</creatorcontrib><creatorcontrib>Ohshiro, Kazufumi</creatorcontrib><creatorcontrib>Shaikenov, Tattym</creatorcontrib><creatorcontrib>Wang, Huamin</creatorcontrib><creatorcontrib>Yeung, Sai-Ching Jim</creatorcontrib><creatorcontrib>Lee, Mong-Hong</creatorcontrib><title>CSN6 drives carcinogenesis by positively regulating Myc stability</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cullin-RING ubiquitin ligases (CRLs) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signalling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated autoubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc.
Csn6
haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eμ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN–Cullin–Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.
The COP9 signalosome (CSN) is a protein complex involved in protein degradation and tumorigenesis. Here the authors show that the CSN6 subunit antagonizes the deneddylation function of CSN5 towards ubiquitin ligase Cullin-1, resulting in Fbxw7 ubiquitin ligase degradation and thereby stabilization of the Fbxw7 target Myc.</description><subject>13</subject><subject>13/1</subject><subject>13/105</subject><subject>13/109</subject><subject>13/31</subject><subject>13/44</subject><subject>13/51</subject><subject>13/95</subject><subject>42</subject><subject>42/41</subject><subject>631/337</subject><subject>631/67</subject><subject>631/80/86</subject><subject>692/420/755</subject><subject>Adaptor Proteins, Signal Transducing - biosynthesis</subject><subject>Adaptor Proteins, Signal Transducing - physiology</subject><subject>Animals</subject><subject>Cancer</subject><subject>Carcinogenesis - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cloning</subject><subject>COP9 Signalosome Complex</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Gene Knockdown Techniques</subject><subject>Humanities and Social Sciences</subject><subject>Lymphoma - metabolism</subject><subject>Lymphoma - physiopathology</subject><subject>Mice</subject><subject>Mice, Transgenic - genetics</subject><subject>multidisciplinary</subject><subject>Neoplasms, Experimental - genetics</subject><subject>Oncology</subject><subject>Peptide Hydrolases - biosynthesis</subject><subject>Peptide Hydrolases - physiology</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myc - biosynthesis</subject><subject>Proto-Oncogene Proteins c-myc - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SKP Cullin F-Box Protein Ligases - physiology</subject><subject>Transcription, Genetic - physiology</subject><subject>Ubiquitination</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkF1LwzAYhYMobszd-AOk4J1SzVfb5EaQ4RdMvVCvQ5pmNaNLZtIO-u_N2JwTc_MGzsN5z3sAOEXwCkHCrq1yi0XICaMHYIghRSkqMDnc-w_AOIQ5jI9wxCg9BgOcEZ6hAg7B7eTtJU8qb1Y6JEp6ZayrtdXBhKTsk6ULpo1a0yde110jW2Pr5LlXSWhlaRrT9ifgaCaboMfbOQIf93fvk8d0-vrwNLmdpopS3KZSZoRlDDJalTzmYFWFuOIcc1TMIFUIyvWEWirKc6hVkZVZIXHBMatIPGMEbja-y65c6Epp23rZiKU3C-l74aQRfxVrPkXtVoJiQhEj0eB8a-DdV6dDK-au8zZmFijHlJMC8ixSFxtKeReC17PdBgTFunHx23iEz_Yz7dCffiNwuQFClGyt_d7O_3bf3XiLpg</recordid><startdate>20141114</startdate><enddate>20141114</enddate><creator>Chen, Jian</creator><creator>Shin, Ji-Hyun</creator><creator>Zhao, Ruiying</creator><creator>Phan, Liem</creator><creator>Wang, Hua</creator><creator>Xue, Yuwen</creator><creator>Post, Sean M.</creator><creator>Ho Choi, Hyun</creator><creator>Chen, Jiun-Sheng</creator><creator>Wang, Edward</creator><creator>Zhou, Zhongguo</creator><creator>Tseng, Chieh</creator><creator>Gully, Christopher</creator><creator>Velazquez-Torres, Guermarie</creator><creator>Fuentes-Mattei, Enrique</creator><creator>Yeung, Giselle</creator><creator>Qiao, Yi</creator><creator>Chou, Ping-Chieh</creator><creator>Su, Chun-Hui</creator><creator>Hsieh, Yun-Chih</creator><creator>Hsu, Shih-Lan</creator><creator>Ohshiro, Kazufumi</creator><creator>Shaikenov, Tattym</creator><creator>Wang, Huamin</creator><creator>Yeung, Sai-Ching Jim</creator><creator>Lee, Mong-Hong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20141114</creationdate><title>CSN6 drives carcinogenesis by positively regulating Myc stability</title><author>Chen, Jian ; Shin, Ji-Hyun ; Zhao, Ruiying ; Phan, Liem ; Wang, Hua ; Xue, Yuwen ; Post, Sean M. ; Ho Choi, Hyun ; Chen, Jiun-Sheng ; Wang, Edward ; Zhou, Zhongguo ; Tseng, Chieh ; Gully, Christopher ; Velazquez-Torres, Guermarie ; Fuentes-Mattei, Enrique ; Yeung, Giselle ; Qiao, Yi ; Chou, Ping-Chieh ; Su, Chun-Hui ; Hsieh, Yun-Chih ; Hsu, Shih-Lan ; Ohshiro, Kazufumi ; Shaikenov, Tattym ; Wang, Huamin ; Yeung, Sai-Ching Jim ; Lee, Mong-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-aa53858084db99188dd19c992917f04c10a7f040eac4960ec75b57a27928d3723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13</topic><topic>13/1</topic><topic>13/105</topic><topic>13/109</topic><topic>13/31</topic><topic>13/44</topic><topic>13/51</topic><topic>13/95</topic><topic>42</topic><topic>42/41</topic><topic>631/337</topic><topic>631/67</topic><topic>631/80/86</topic><topic>692/420/755</topic><topic>Adaptor Proteins, Signal Transducing - biosynthesis</topic><topic>Adaptor Proteins, Signal Transducing - physiology</topic><topic>Animals</topic><topic>Cancer</topic><topic>Carcinogenesis - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cloning</topic><topic>COP9 Signalosome Complex</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Gene Knockdown Techniques</topic><topic>Humanities and Social Sciences</topic><topic>Lymphoma - metabolism</topic><topic>Lymphoma - physiopathology</topic><topic>Mice</topic><topic>Mice, Transgenic - genetics</topic><topic>multidisciplinary</topic><topic>Neoplasms, Experimental - genetics</topic><topic>Oncology</topic><topic>Peptide Hydrolases - biosynthesis</topic><topic>Peptide Hydrolases - physiology</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myc - biosynthesis</topic><topic>Proto-Oncogene Proteins c-myc - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SKP Cullin F-Box Protein Ligases - physiology</topic><topic>Transcription, Genetic - physiology</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Shin, Ji-Hyun</creatorcontrib><creatorcontrib>Zhao, Ruiying</creatorcontrib><creatorcontrib>Phan, Liem</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Xue, Yuwen</creatorcontrib><creatorcontrib>Post, Sean M.</creatorcontrib><creatorcontrib>Ho Choi, Hyun</creatorcontrib><creatorcontrib>Chen, Jiun-Sheng</creatorcontrib><creatorcontrib>Wang, Edward</creatorcontrib><creatorcontrib>Zhou, Zhongguo</creatorcontrib><creatorcontrib>Tseng, Chieh</creatorcontrib><creatorcontrib>Gully, Christopher</creatorcontrib><creatorcontrib>Velazquez-Torres, Guermarie</creatorcontrib><creatorcontrib>Fuentes-Mattei, Enrique</creatorcontrib><creatorcontrib>Yeung, Giselle</creatorcontrib><creatorcontrib>Qiao, Yi</creatorcontrib><creatorcontrib>Chou, Ping-Chieh</creatorcontrib><creatorcontrib>Su, Chun-Hui</creatorcontrib><creatorcontrib>Hsieh, Yun-Chih</creatorcontrib><creatorcontrib>Hsu, Shih-Lan</creatorcontrib><creatorcontrib>Ohshiro, Kazufumi</creatorcontrib><creatorcontrib>Shaikenov, Tattym</creatorcontrib><creatorcontrib>Wang, Huamin</creatorcontrib><creatorcontrib>Yeung, Sai-Ching Jim</creatorcontrib><creatorcontrib>Lee, Mong-Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jian</au><au>Shin, Ji-Hyun</au><au>Zhao, Ruiying</au><au>Phan, Liem</au><au>Wang, Hua</au><au>Xue, Yuwen</au><au>Post, Sean M.</au><au>Ho Choi, Hyun</au><au>Chen, Jiun-Sheng</au><au>Wang, Edward</au><au>Zhou, Zhongguo</au><au>Tseng, Chieh</au><au>Gully, Christopher</au><au>Velazquez-Torres, Guermarie</au><au>Fuentes-Mattei, Enrique</au><au>Yeung, Giselle</au><au>Qiao, Yi</au><au>Chou, Ping-Chieh</au><au>Su, Chun-Hui</au><au>Hsieh, Yun-Chih</au><au>Hsu, Shih-Lan</au><au>Ohshiro, Kazufumi</au><au>Shaikenov, Tattym</au><au>Wang, Huamin</au><au>Yeung, Sai-Ching Jim</au><au>Lee, Mong-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CSN6 drives carcinogenesis by positively regulating Myc stability</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-11-14</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5384</spage><epage>5384</epage><pages>5384-5384</pages><artnum>5384</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cullin-RING ubiquitin ligases (CRLs) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signalling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated autoubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc.
Csn6
haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eμ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN–Cullin–Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.
The COP9 signalosome (CSN) is a protein complex involved in protein degradation and tumorigenesis. Here the authors show that the CSN6 subunit antagonizes the deneddylation function of CSN5 towards ubiquitin ligase Cullin-1, resulting in Fbxw7 ubiquitin ligase degradation and thereby stabilization of the Fbxw7 target Myc.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25395170</pmid><doi>10.1038/ncomms6384</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-11, Vol.5 (1), p.5384-5384, Article 5384 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4234183 |
source | Springer Nature OA Free Journals |
subjects | 13 13/1 13/105 13/109 13/31 13/44 13/51 13/95 42 42/41 631/337 631/67 631/80/86 692/420/755 Adaptor Proteins, Signal Transducing - biosynthesis Adaptor Proteins, Signal Transducing - physiology Animals Cancer Carcinogenesis - genetics Cell Line, Tumor Cloning COP9 Signalosome Complex Gene Expression Regulation, Neoplastic - physiology Gene Knockdown Techniques Humanities and Social Sciences Lymphoma - metabolism Lymphoma - physiopathology Mice Mice, Transgenic - genetics multidisciplinary Neoplasms, Experimental - genetics Oncology Peptide Hydrolases - biosynthesis Peptide Hydrolases - physiology Proteins Proto-Oncogene Proteins c-myc - biosynthesis Proto-Oncogene Proteins c-myc - physiology Science Science (multidisciplinary) SKP Cullin F-Box Protein Ligases - physiology Transcription, Genetic - physiology Ubiquitination |
title | CSN6 drives carcinogenesis by positively regulating Myc stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CSN6%20drives%20carcinogenesis%20by%20positively%20regulating%20Myc%20stability&rft.jtitle=Nature%20communications&rft.au=Chen,%20Jian&rft.date=2014-11-14&rft.volume=5&rft.issue=1&rft.spage=5384&rft.epage=5384&rft.pages=5384-5384&rft.artnum=5384&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6384&rft_dat=%3Cproquest_C6C%3E3495146761%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1624937095&rft_id=info:pmid/25395170&rfr_iscdi=true |