A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates

This protocol describes a method for efficient chemical synthesis of an analog of inositol-1,4,5-trisphosphate (IP 3 ) hexakis acetoxymethyl ester having an ortho -nitroveratryl photochemical caging group on the 6-hydroxyl position. The six esters render the probe membrane permeant, such that it can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2011-03, Vol.6 (3), p.327-337
Hauptverfasser: Kantevari, Srinivas, Gordon, Grant R J, MacVicar, Brian A, Ellis-Davies, Graham C R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 3
container_start_page 327
container_title Nature protocols
container_volume 6
creator Kantevari, Srinivas
Gordon, Grant R J
MacVicar, Brian A
Ellis-Davies, Graham C R
description This protocol describes a method for efficient chemical synthesis of an analog of inositol-1,4,5-trisphosphate (IP 3 ) hexakis acetoxymethyl ester having an ortho -nitroveratryl photochemical caging group on the 6-hydroxyl position. The six esters render the probe membrane permeant, such that it can be loaded into intact living cells in vitro or in vivo . Inside cells, the caged IP 3 is inert until activated by two-photon excitation at 720 nm. The photoliberated signaling molecule can mobilize release of Ca 2+ from intracellular stores on the endoplasmic reticulum. When co-loaded with the fluorescent Ca 2+ indicator rhod-2, one laser can be used for stimulating and monitoring intracellular Ca 2+ signaling with single-cell resolution. This protocol has chemistry and biology sections; the former describes the organic synthesis of the caged IP 3 , which requires 12 d, and the latter an application to a day-long study of astrocyte-regulated neuronal function in living brain slices acutely isolated from rats. As Ca 2+ is the single most important intracellular second messenger and the IP 3 -Ca 2+ signaling cascade is used by many cells to produce increases in Ca 2+ concentration, this method should be widely applicable for the study of a variety of physiological processes in intact biological systems.
doi_str_mv 10.1038/nprot.2010.194
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4233651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A251459743</galeid><sourcerecordid>A251459743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-43d58d1ba4ad6135a75222586f5c8c73c1d09c21d650f4fbf9eba729420727593</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhgdRbK3eeikBL0RktvmczNwIy-JHoShoxcuQzZyZTZlJpklGuv_ebFtrV1ZycZKc57zJObxF8ZLgBcGsPnVT8GlB8e7c8EfFMZECl1Q2zeObPS8pqZuj4lmMlxhzySr5tDiihElaE3ZczEs0BW2SNXpA_WxbQMmjtAEUty6HaCPSrkVzBOQ7NMK4DtpBOUEYQbuEtIHkr7cjpM12QBAThLgjje6hRdb5aJMf0OSH7bTxcdroBPF58aTTQ4QXd_Gk-PHxw8Xqc3n-9dPZanleGtHwVHLWirola811WxEmtBSUUlFXnTC1kcyQFjeGkrYSuOPdumtgrSVtOMWSStGwk-L9re40r0doDbgU9KCmYEcdtsprq_Yzzm5U738pThmrBMkCb-4Egr-ac3dqtNHAMOQZ-DmqWgiKOZc78vU_5KWfg8vdKcJoRRtCBP5L9XoAZV3n87Nmp6mWVBAuGslZphYHqLxaGK3xDjqb7_cK3u4VZCbBder1HKM6-_5tn333f3Z58XP15eBXTPAxBujuh0ew2jlQ3ThQ7RyosgNzwauHI7_H_1guA6e3QMwp10N4MKjDkr8BsGHmpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326291150</pqid></control><display><type>article</type><title>A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Single Title from Nature Journals</source><creator>Kantevari, Srinivas ; Gordon, Grant R J ; MacVicar, Brian A ; Ellis-Davies, Graham C R</creator><creatorcontrib>Kantevari, Srinivas ; Gordon, Grant R J ; MacVicar, Brian A ; Ellis-Davies, Graham C R</creatorcontrib><description>This protocol describes a method for efficient chemical synthesis of an analog of inositol-1,4,5-trisphosphate (IP 3 ) hexakis acetoxymethyl ester having an ortho -nitroveratryl photochemical caging group on the 6-hydroxyl position. The six esters render the probe membrane permeant, such that it can be loaded into intact living cells in vitro or in vivo . Inside cells, the caged IP 3 is inert until activated by two-photon excitation at 720 nm. The photoliberated signaling molecule can mobilize release of Ca 2+ from intracellular stores on the endoplasmic reticulum. When co-loaded with the fluorescent Ca 2+ indicator rhod-2, one laser can be used for stimulating and monitoring intracellular Ca 2+ signaling with single-cell resolution. This protocol has chemistry and biology sections; the former describes the organic synthesis of the caged IP 3 , which requires 12 d, and the latter an application to a day-long study of astrocyte-regulated neuronal function in living brain slices acutely isolated from rats. As Ca 2+ is the single most important intracellular second messenger and the IP 3 -Ca 2+ signaling cascade is used by many cells to produce increases in Ca 2+ concentration, this method should be widely applicable for the study of a variety of physiological processes in intact biological systems.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2010.194</identifier><identifier>PMID: 21372813</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/666 ; 631/378 ; Analytical Chemistry ; Animals ; Astrocytes - drug effects ; Astrocytes - physiology ; Atmospheric chemistry ; Biological Techniques ; Biomedical and Life Sciences ; Calcium - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Cell Membrane - metabolism ; Cell Membrane Permeability ; Cellular signal transduction ; Chemical synthesis ; Computational Biology/Bioinformatics ; Esters ; Fluorescent Dyes ; Inositol 1,4,5-Trisphosphate - analogs &amp; derivatives ; Inositol 1,4,5-Trisphosphate - chemical synthesis ; Inositol phosphates ; Lasers ; Life Sciences ; Methods ; Microarrays ; Microscopy ; Neurons - drug effects ; Neurons - physiology ; Organic Chemistry ; Photochemicals ; Photolysis ; Physiology ; protocol ; Rats ; Rats, Sprague-Dawley ; Time Factors</subject><ispartof>Nature protocols, 2011-03, Vol.6 (3), p.327-337</ispartof><rights>Springer Nature Limited 2011</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-43d58d1ba4ad6135a75222586f5c8c73c1d09c21d650f4fbf9eba729420727593</citedby><cites>FETCH-LOGICAL-c594t-43d58d1ba4ad6135a75222586f5c8c73c1d09c21d650f4fbf9eba729420727593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nprot.2010.194$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nprot.2010.194$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21372813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kantevari, Srinivas</creatorcontrib><creatorcontrib>Gordon, Grant R J</creatorcontrib><creatorcontrib>MacVicar, Brian A</creatorcontrib><creatorcontrib>Ellis-Davies, Graham C R</creatorcontrib><title>A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>This protocol describes a method for efficient chemical synthesis of an analog of inositol-1,4,5-trisphosphate (IP 3 ) hexakis acetoxymethyl ester having an ortho -nitroveratryl photochemical caging group on the 6-hydroxyl position. The six esters render the probe membrane permeant, such that it can be loaded into intact living cells in vitro or in vivo . Inside cells, the caged IP 3 is inert until activated by two-photon excitation at 720 nm. The photoliberated signaling molecule can mobilize release of Ca 2+ from intracellular stores on the endoplasmic reticulum. When co-loaded with the fluorescent Ca 2+ indicator rhod-2, one laser can be used for stimulating and monitoring intracellular Ca 2+ signaling with single-cell resolution. This protocol has chemistry and biology sections; the former describes the organic synthesis of the caged IP 3 , which requires 12 d, and the latter an application to a day-long study of astrocyte-regulated neuronal function in living brain slices acutely isolated from rats. As Ca 2+ is the single most important intracellular second messenger and the IP 3 -Ca 2+ signaling cascade is used by many cells to produce increases in Ca 2+ concentration, this method should be widely applicable for the study of a variety of physiological processes in intact biological systems.</description><subject>631/1647/666</subject><subject>631/378</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - physiology</subject><subject>Atmospheric chemistry</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Cellular signal transduction</subject><subject>Chemical synthesis</subject><subject>Computational Biology/Bioinformatics</subject><subject>Esters</subject><subject>Fluorescent Dyes</subject><subject>Inositol 1,4,5-Trisphosphate - analogs &amp; derivatives</subject><subject>Inositol 1,4,5-Trisphosphate - chemical synthesis</subject><subject>Inositol phosphates</subject><subject>Lasers</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Microscopy</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Organic Chemistry</subject><subject>Photochemicals</subject><subject>Photolysis</subject><subject>Physiology</subject><subject>protocol</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Time Factors</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kl1rFDEUhgdRbK3eeikBL0RktvmczNwIy-JHoShoxcuQzZyZTZlJpklGuv_ebFtrV1ZycZKc57zJObxF8ZLgBcGsPnVT8GlB8e7c8EfFMZECl1Q2zeObPS8pqZuj4lmMlxhzySr5tDiihElaE3ZczEs0BW2SNXpA_WxbQMmjtAEUty6HaCPSrkVzBOQ7NMK4DtpBOUEYQbuEtIHkr7cjpM12QBAThLgjje6hRdb5aJMf0OSH7bTxcdroBPF58aTTQ4QXd_Gk-PHxw8Xqc3n-9dPZanleGtHwVHLWirola811WxEmtBSUUlFXnTC1kcyQFjeGkrYSuOPdumtgrSVtOMWSStGwk-L9re40r0doDbgU9KCmYEcdtsprq_Yzzm5U738pThmrBMkCb-4Egr-ac3dqtNHAMOQZ-DmqWgiKOZc78vU_5KWfg8vdKcJoRRtCBP5L9XoAZV3n87Nmp6mWVBAuGslZphYHqLxaGK3xDjqb7_cK3u4VZCbBder1HKM6-_5tn333f3Z58XP15eBXTPAxBujuh0ew2jlQ3ThQ7RyosgNzwauHI7_H_1guA6e3QMwp10N4MKjDkr8BsGHmpQ</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Kantevari, Srinivas</creator><creator>Gordon, Grant R J</creator><creator>MacVicar, Brian A</creator><creator>Ellis-Davies, Graham C R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates</title><author>Kantevari, Srinivas ; Gordon, Grant R J ; MacVicar, Brian A ; Ellis-Davies, Graham C R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-43d58d1ba4ad6135a75222586f5c8c73c1d09c21d650f4fbf9eba729420727593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/1647/666</topic><topic>631/378</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - physiology</topic><topic>Atmospheric chemistry</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Cellular signal transduction</topic><topic>Chemical synthesis</topic><topic>Computational Biology/Bioinformatics</topic><topic>Esters</topic><topic>Fluorescent Dyes</topic><topic>Inositol 1,4,5-Trisphosphate - analogs &amp; derivatives</topic><topic>Inositol 1,4,5-Trisphosphate - chemical synthesis</topic><topic>Inositol phosphates</topic><topic>Lasers</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Microscopy</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Organic Chemistry</topic><topic>Photochemicals</topic><topic>Photolysis</topic><topic>Physiology</topic><topic>protocol</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kantevari, Srinivas</creatorcontrib><creatorcontrib>Gordon, Grant R J</creatorcontrib><creatorcontrib>MacVicar, Brian A</creatorcontrib><creatorcontrib>Ellis-Davies, Graham C R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kantevari, Srinivas</au><au>Gordon, Grant R J</au><au>MacVicar, Brian A</au><au>Ellis-Davies, Graham C R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>6</volume><issue>3</issue><spage>327</spage><epage>337</epage><pages>327-337</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>This protocol describes a method for efficient chemical synthesis of an analog of inositol-1,4,5-trisphosphate (IP 3 ) hexakis acetoxymethyl ester having an ortho -nitroveratryl photochemical caging group on the 6-hydroxyl position. The six esters render the probe membrane permeant, such that it can be loaded into intact living cells in vitro or in vivo . Inside cells, the caged IP 3 is inert until activated by two-photon excitation at 720 nm. The photoliberated signaling molecule can mobilize release of Ca 2+ from intracellular stores on the endoplasmic reticulum. When co-loaded with the fluorescent Ca 2+ indicator rhod-2, one laser can be used for stimulating and monitoring intracellular Ca 2+ signaling with single-cell resolution. This protocol has chemistry and biology sections; the former describes the organic synthesis of the caged IP 3 , which requires 12 d, and the latter an application to a day-long study of astrocyte-regulated neuronal function in living brain slices acutely isolated from rats. As Ca 2+ is the single most important intracellular second messenger and the IP 3 -Ca 2+ signaling cascade is used by many cells to produce increases in Ca 2+ concentration, this method should be widely applicable for the study of a variety of physiological processes in intact biological systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21372813</pmid><doi>10.1038/nprot.2010.194</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2011-03, Vol.6 (3), p.327-337
issn 1754-2189
1750-2799
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4233651
source MEDLINE; Springer Nature - Complete Springer Journals; Single Title from Nature Journals
subjects 631/1647/666
631/378
Analytical Chemistry
Animals
Astrocytes - drug effects
Astrocytes - physiology
Atmospheric chemistry
Biological Techniques
Biomedical and Life Sciences
Calcium - metabolism
Calcium Signaling - drug effects
Calcium Signaling - physiology
Cell Membrane - metabolism
Cell Membrane Permeability
Cellular signal transduction
Chemical synthesis
Computational Biology/Bioinformatics
Esters
Fluorescent Dyes
Inositol 1,4,5-Trisphosphate - analogs & derivatives
Inositol 1,4,5-Trisphosphate - chemical synthesis
Inositol phosphates
Lasers
Life Sciences
Methods
Microarrays
Microscopy
Neurons - drug effects
Neurons - physiology
Organic Chemistry
Photochemicals
Photolysis
Physiology
protocol
Rats
Rats, Sprague-Dawley
Time Factors
title A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20practical%20guide%20to%20the%20synthesis%20and%20use%20of%20membrane-permeant%20acetoxymethyl%20esters%20of%20caged%20inositol%20polyphosphates&rft.jtitle=Nature%20protocols&rft.au=Kantevari,%20Srinivas&rft.date=2011-03-01&rft.volume=6&rft.issue=3&rft.spage=327&rft.epage=337&rft.pages=327-337&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2010.194&rft_dat=%3Cgale_pubme%3EA251459743%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326291150&rft_id=info:pmid/21372813&rft_galeid=A251459743&rfr_iscdi=true