A biomechanical mechanism for initiating DNA packaging

The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2014-10, Vol.42 (19), p.11921-11927
Hauptverfasser: Wang, Haowei, Yehoshua, Samuel, Ali, Sabrina S, Navarre, William Wiley, Milstein, Joshua N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11927
container_issue 19
container_start_page 11921
container_title Nucleic acids research
container_volume 42
creator Wang, Haowei
Yehoshua, Samuel
Ali, Sabrina S
Navarre, William Wiley
Milstein, Joshua N
description The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.
doi_str_mv 10.1093/nar/gku896
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4231757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808705137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMotlYv_gDZowhr87lJLkKpn1D0oucwm822sftRk13Bf-9Kq-jN08wwDy8zPAidEnxJsGbTBsJ0ue6VzvbQmLCMplxndB-NMcMiJZirETqK8RVjwongh2hEBZVcMjpG2SzJfVs7u4LGW6iSXRvrpGxD4hvfeeh8s0yuH2fJBuwalsN0jA5KqKI72dUJerm9eZ7fp4unu4f5bJFaTkiXQq5VYQG0YiVIZkvpaGFVISyToEs5HKSEUjS3maQKcJ5rkFoXXEPBhFRsgq62uZs-r11hXdMFqMwm-BrCh2nBm7-bxq_Msn03nDIihRwCzncBoX3rXexM7aN1VQWNa_toiMJKYkHYP9CMUpwNKBvQiy1qQxtjcOXPRQSbLydmcGK2Tgb47PcPP-i3BPYJ3ySIkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622065133</pqid></control><display><type>article</type><title>A biomechanical mechanism for initiating DNA packaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Haowei ; Yehoshua, Samuel ; Ali, Sabrina S ; Navarre, William Wiley ; Milstein, Joshua N</creator><creatorcontrib>Wang, Haowei ; Yehoshua, Samuel ; Ali, Sabrina S ; Navarre, William Wiley ; Milstein, Joshua N</creatorcontrib><description>The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku896</identifier><identifier>PMID: 25274732</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomechanical Phenomena ; DNA Packaging ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene regulation, Chromatin and Epigenetics ; Mutation</subject><ispartof>Nucleic acids research, 2014-10, Vol.42 (19), p.11921-11927</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</citedby><cites>FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25274732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haowei</creatorcontrib><creatorcontrib>Yehoshua, Samuel</creatorcontrib><creatorcontrib>Ali, Sabrina S</creatorcontrib><creatorcontrib>Navarre, William Wiley</creatorcontrib><creatorcontrib>Milstein, Joshua N</creatorcontrib><title>A biomechanical mechanism for initiating DNA packaging</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomechanical Phenomena</subject><subject>DNA Packaging</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Mutation</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LAzEQhoMotlYv_gDZowhr87lJLkKpn1D0oucwm822sftRk13Bf-9Kq-jN08wwDy8zPAidEnxJsGbTBsJ0ue6VzvbQmLCMplxndB-NMcMiJZirETqK8RVjwongh2hEBZVcMjpG2SzJfVs7u4LGW6iSXRvrpGxD4hvfeeh8s0yuH2fJBuwalsN0jA5KqKI72dUJerm9eZ7fp4unu4f5bJFaTkiXQq5VYQG0YiVIZkvpaGFVISyToEs5HKSEUjS3maQKcJ5rkFoXXEPBhFRsgq62uZs-r11hXdMFqMwm-BrCh2nBm7-bxq_Msn03nDIihRwCzncBoX3rXexM7aN1VQWNa_toiMJKYkHYP9CMUpwNKBvQiy1qQxtjcOXPRQSbLydmcGK2Tgb47PcPP-i3BPYJ3ySIkQ</recordid><startdate>20141029</startdate><enddate>20141029</enddate><creator>Wang, Haowei</creator><creator>Yehoshua, Samuel</creator><creator>Ali, Sabrina S</creator><creator>Navarre, William Wiley</creator><creator>Milstein, Joshua N</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20141029</creationdate><title>A biomechanical mechanism for initiating DNA packaging</title><author>Wang, Haowei ; Yehoshua, Samuel ; Ali, Sabrina S ; Navarre, William Wiley ; Milstein, Joshua N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomechanical Phenomena</topic><topic>DNA Packaging</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haowei</creatorcontrib><creatorcontrib>Yehoshua, Samuel</creatorcontrib><creatorcontrib>Ali, Sabrina S</creatorcontrib><creatorcontrib>Navarre, William Wiley</creatorcontrib><creatorcontrib>Milstein, Joshua N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haowei</au><au>Yehoshua, Samuel</au><au>Ali, Sabrina S</au><au>Navarre, William Wiley</au><au>Milstein, Joshua N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biomechanical mechanism for initiating DNA packaging</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-10-29</date><risdate>2014</risdate><volume>42</volume><issue>19</issue><spage>11921</spage><epage>11927</epage><pages>11921-11927</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25274732</pmid><doi>10.1093/nar/gku896</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2014-10, Vol.42 (19), p.11921-11927
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4231757
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biomechanical Phenomena
DNA Packaging
DNA, Bacterial - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene regulation, Chromatin and Epigenetics
Mutation
title A biomechanical mechanism for initiating DNA packaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biomechanical%20mechanism%20for%20initiating%20DNA%20packaging&rft.jtitle=Nucleic%20acids%20research&rft.au=Wang,%20Haowei&rft.date=2014-10-29&rft.volume=42&rft.issue=19&rft.spage=11921&rft.epage=11927&rft.pages=11921-11927&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku896&rft_dat=%3Cproquest_pubme%3E1808705137%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622065133&rft_id=info:pmid/25274732&rfr_iscdi=true