A biomechanical mechanism for initiating DNA packaging
The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2014-10, Vol.42 (19), p.11921-11927 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11927 |
---|---|
container_issue | 19 |
container_start_page | 11921 |
container_title | Nucleic acids research |
container_volume | 42 |
creator | Wang, Haowei Yehoshua, Samuel Ali, Sabrina S Navarre, William Wiley Milstein, Joshua N |
description | The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome. |
doi_str_mv | 10.1093/nar/gku896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4231757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808705137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMotlYv_gDZowhr87lJLkKpn1D0oucwm822sftRk13Bf-9Kq-jN08wwDy8zPAidEnxJsGbTBsJ0ue6VzvbQmLCMplxndB-NMcMiJZirETqK8RVjwongh2hEBZVcMjpG2SzJfVs7u4LGW6iSXRvrpGxD4hvfeeh8s0yuH2fJBuwalsN0jA5KqKI72dUJerm9eZ7fp4unu4f5bJFaTkiXQq5VYQG0YiVIZkvpaGFVISyToEs5HKSEUjS3maQKcJ5rkFoXXEPBhFRsgq62uZs-r11hXdMFqMwm-BrCh2nBm7-bxq_Msn03nDIihRwCzncBoX3rXexM7aN1VQWNa_toiMJKYkHYP9CMUpwNKBvQiy1qQxtjcOXPRQSbLydmcGK2Tgb47PcPP-i3BPYJ3ySIkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622065133</pqid></control><display><type>article</type><title>A biomechanical mechanism for initiating DNA packaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Haowei ; Yehoshua, Samuel ; Ali, Sabrina S ; Navarre, William Wiley ; Milstein, Joshua N</creator><creatorcontrib>Wang, Haowei ; Yehoshua, Samuel ; Ali, Sabrina S ; Navarre, William Wiley ; Milstein, Joshua N</creatorcontrib><description>The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku896</identifier><identifier>PMID: 25274732</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomechanical Phenomena ; DNA Packaging ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene regulation, Chromatin and Epigenetics ; Mutation</subject><ispartof>Nucleic acids research, 2014-10, Vol.42 (19), p.11921-11927</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</citedby><cites>FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25274732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haowei</creatorcontrib><creatorcontrib>Yehoshua, Samuel</creatorcontrib><creatorcontrib>Ali, Sabrina S</creatorcontrib><creatorcontrib>Navarre, William Wiley</creatorcontrib><creatorcontrib>Milstein, Joshua N</creatorcontrib><title>A biomechanical mechanism for initiating DNA packaging</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomechanical Phenomena</subject><subject>DNA Packaging</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Mutation</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LAzEQhoMotlYv_gDZowhr87lJLkKpn1D0oucwm822sftRk13Bf-9Kq-jN08wwDy8zPAidEnxJsGbTBsJ0ue6VzvbQmLCMplxndB-NMcMiJZirETqK8RVjwongh2hEBZVcMjpG2SzJfVs7u4LGW6iSXRvrpGxD4hvfeeh8s0yuH2fJBuwalsN0jA5KqKI72dUJerm9eZ7fp4unu4f5bJFaTkiXQq5VYQG0YiVIZkvpaGFVISyToEs5HKSEUjS3maQKcJ5rkFoXXEPBhFRsgq62uZs-r11hXdMFqMwm-BrCh2nBm7-bxq_Msn03nDIihRwCzncBoX3rXexM7aN1VQWNa_toiMJKYkHYP9CMUpwNKBvQiy1qQxtjcOXPRQSbLydmcGK2Tgb47PcPP-i3BPYJ3ySIkQ</recordid><startdate>20141029</startdate><enddate>20141029</enddate><creator>Wang, Haowei</creator><creator>Yehoshua, Samuel</creator><creator>Ali, Sabrina S</creator><creator>Navarre, William Wiley</creator><creator>Milstein, Joshua N</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20141029</creationdate><title>A biomechanical mechanism for initiating DNA packaging</title><author>Wang, Haowei ; Yehoshua, Samuel ; Ali, Sabrina S ; Navarre, William Wiley ; Milstein, Joshua N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ab98dcaa983fa73cf7e2dc8d5c37a9f701485882bc6728a0bb9a799d49ad35783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomechanical Phenomena</topic><topic>DNA Packaging</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haowei</creatorcontrib><creatorcontrib>Yehoshua, Samuel</creatorcontrib><creatorcontrib>Ali, Sabrina S</creatorcontrib><creatorcontrib>Navarre, William Wiley</creatorcontrib><creatorcontrib>Milstein, Joshua N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haowei</au><au>Yehoshua, Samuel</au><au>Ali, Sabrina S</au><au>Navarre, William Wiley</au><au>Milstein, Joshua N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biomechanical mechanism for initiating DNA packaging</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-10-29</date><risdate>2014</risdate><volume>42</volume><issue>19</issue><spage>11921</spage><epage>11927</epage><pages>11921-11927</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25274732</pmid><doi>10.1093/nar/gku896</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2014-10, Vol.42 (19), p.11921-11927 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4231757 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism Biomechanical Phenomena DNA Packaging DNA, Bacterial - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene regulation, Chromatin and Epigenetics Mutation |
title | A biomechanical mechanism for initiating DNA packaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biomechanical%20mechanism%20for%20initiating%20DNA%20packaging&rft.jtitle=Nucleic%20acids%20research&rft.au=Wang,%20Haowei&rft.date=2014-10-29&rft.volume=42&rft.issue=19&rft.spage=11921&rft.epage=11927&rft.pages=11921-11927&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku896&rft_dat=%3Cproquest_pubme%3E1808705137%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622065133&rft_id=info:pmid/25274732&rfr_iscdi=true |