Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination

The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-11, Vol.4 (1), p.7048-7048, Article 7048
Hauptverfasser: Hedde, Per Niklas, Stakic, Milka, Gratton, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7048
container_issue 1
container_start_page 7048
container_title Scientific reports
container_volume 4
creator Hedde, Per Niklas
Stakic, Milka
Gratton, Enrico
description The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified.
doi_str_mv 10.1038/srep07048
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4231332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898172307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b5e699c55cacd056b67d67f0350d4f2580c91a5324b43bcbcc20fd88911f1f5d3</originalsourceid><addsrcrecordid>eNplkV9LHDEUxUNRqqgPfoES6IsVVvN3JvNSkKW1CyuWqs8hk2S2kUwyTWYW_PbNsrpsax6SC_eXk3tyADjH6AojKq5zsgOqERMfwDFBjM8IJeRgrz4CZzk_o7I4aRhuPoIjwmnDaIWOgf-lBmfgnVV5Sra3YYSxg3fRWz15leBjUiEPMY1QBQMXYbRJ6dHFAF3Izli4dGsXVnBuvc_wKW_qh7J5C396FSxceD_1LqjNnVNw2Cmf7dnreQKevn97nP-YLe9vF_Ob5UwzKsZZy23VNJpzrbRBvGqr2lR1hyhHhnWEC6QbrDglrGW01a3WBHVGiAbjDnfc0BPwdas7TG1vjS6ukvJySK5X6UVG5eS_neB-y1VcS0YoppQUgYtXgRT_TDaPsndZF4vFUZyyxFX5wfKVghb083_oc5xSKPYkFo3ANaGoLtSXLaVTzCWxbjcMRnITo9zFWNhP-9PvyLfQCnC5BXJphZVNe0--U_sLzLqoHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898172307</pqid></control><display><type>article</type><title>Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hedde, Per Niklas ; Stakic, Milka ; Gratton, Enrico</creator><creatorcontrib>Hedde, Per Niklas ; Stakic, Milka ; Gratton, Enrico</creatorcontrib><description>The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep07048</identifier><identifier>PMID: 25394360</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 631/57 ; 631/57/2267 ; Animals ; Biochemical Phenomena ; Biological Transport ; Cameras ; Cell adhesion ; Cell adhesion &amp; migration ; Cell Line ; Clathrin ; Coated vesicles ; Diffusion ; Diffusion coefficient ; Endocytosis ; Humanities and Social Sciences ; Illumination ; Image processing ; Molecular Imaging - methods ; multidisciplinary ; Protein Binding ; Protein interaction ; Proteins - chemistry ; Proteins - metabolism ; Science ; Spectroscopy ; Velocity</subject><ispartof>Scientific reports, 2014-11, Vol.4 (1), p.7048-7048, Article 7048</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b5e699c55cacd056b67d67f0350d4f2580c91a5324b43bcbcc20fd88911f1f5d3</citedby><cites>FETCH-LOGICAL-c438t-b5e699c55cacd056b67d67f0350d4f2580c91a5324b43bcbcc20fd88911f1f5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231332/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231332/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25394360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedde, Per Niklas</creatorcontrib><creatorcontrib>Stakic, Milka</creatorcontrib><creatorcontrib>Gratton, Enrico</creatorcontrib><title>Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified.</description><subject>14/19</subject><subject>631/57</subject><subject>631/57/2267</subject><subject>Animals</subject><subject>Biochemical Phenomena</subject><subject>Biological Transport</subject><subject>Cameras</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line</subject><subject>Clathrin</subject><subject>Coated vesicles</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Endocytosis</subject><subject>Humanities and Social Sciences</subject><subject>Illumination</subject><subject>Image processing</subject><subject>Molecular Imaging - methods</subject><subject>multidisciplinary</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Science</subject><subject>Spectroscopy</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9LHDEUxUNRqqgPfoES6IsVVvN3JvNSkKW1CyuWqs8hk2S2kUwyTWYW_PbNsrpsax6SC_eXk3tyADjH6AojKq5zsgOqERMfwDFBjM8IJeRgrz4CZzk_o7I4aRhuPoIjwmnDaIWOgf-lBmfgnVV5Sra3YYSxg3fRWz15leBjUiEPMY1QBQMXYbRJ6dHFAF3Izli4dGsXVnBuvc_wKW_qh7J5C396FSxceD_1LqjNnVNw2Cmf7dnreQKevn97nP-YLe9vF_Ob5UwzKsZZy23VNJpzrbRBvGqr2lR1hyhHhnWEC6QbrDglrGW01a3WBHVGiAbjDnfc0BPwdas7TG1vjS6ukvJySK5X6UVG5eS_neB-y1VcS0YoppQUgYtXgRT_TDaPsndZF4vFUZyyxFX5wfKVghb083_oc5xSKPYkFo3ANaGoLtSXLaVTzCWxbjcMRnITo9zFWNhP-9PvyLfQCnC5BXJphZVNe0--U_sLzLqoHw</recordid><startdate>20141114</startdate><enddate>20141114</enddate><creator>Hedde, Per Niklas</creator><creator>Stakic, Milka</creator><creator>Gratton, Enrico</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141114</creationdate><title>Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination</title><author>Hedde, Per Niklas ; Stakic, Milka ; Gratton, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b5e699c55cacd056b67d67f0350d4f2580c91a5324b43bcbcc20fd88911f1f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14/19</topic><topic>631/57</topic><topic>631/57/2267</topic><topic>Animals</topic><topic>Biochemical Phenomena</topic><topic>Biological Transport</topic><topic>Cameras</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line</topic><topic>Clathrin</topic><topic>Coated vesicles</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Endocytosis</topic><topic>Humanities and Social Sciences</topic><topic>Illumination</topic><topic>Image processing</topic><topic>Molecular Imaging - methods</topic><topic>multidisciplinary</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Science</topic><topic>Spectroscopy</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedde, Per Niklas</creatorcontrib><creatorcontrib>Stakic, Milka</creatorcontrib><creatorcontrib>Gratton, Enrico</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedde, Per Niklas</au><au>Stakic, Milka</au><au>Gratton, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-11-14</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>7048</spage><epage>7048</epage><pages>7048-7048</pages><artnum>7048</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25394360</pmid><doi>10.1038/srep07048</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-11, Vol.4 (1), p.7048-7048, Article 7048
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4231332
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 14/19
631/57
631/57/2267
Animals
Biochemical Phenomena
Biological Transport
Cameras
Cell adhesion
Cell adhesion & migration
Cell Line
Clathrin
Coated vesicles
Diffusion
Diffusion coefficient
Endocytosis
Humanities and Social Sciences
Illumination
Image processing
Molecular Imaging - methods
multidisciplinary
Protein Binding
Protein interaction
Proteins - chemistry
Proteins - metabolism
Science
Spectroscopy
Velocity
title Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Measurement%20of%20Molecular%20Transport%20and%20Interaction%20inside%20Living%20Cells%20Using%20Single%20Plane%20Illumination&rft.jtitle=Scientific%20reports&rft.au=Hedde,%20Per%20Niklas&rft.date=2014-11-14&rft.volume=4&rft.issue=1&rft.spage=7048&rft.epage=7048&rft.pages=7048-7048&rft.artnum=7048&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep07048&rft_dat=%3Cproquest_pubme%3E1898172307%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898172307&rft_id=info:pmid/25394360&rfr_iscdi=true